Ouwei Sheng, Chengbin Jin, Tao Yang, Zhijin Ju, Jianmin Luo and Xinyong Tao
{"title":"Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries","authors":"Ouwei Sheng, Chengbin Jin, Tao Yang, Zhijin Ju, Jianmin Luo and Xinyong Tao","doi":"10.1039/D3EE01173A","DOIUrl":null,"url":null,"abstract":"<p >The solid polymer electrolyte (SPE) as a key battery component promises advances in solid-state lithium (Li) metal batteries (SSLMBs). Biomass, with a naturally derived structure design, composition and physical/chemical properties, exhibits advantages over the traditionally synthesized polymers in SPE. Biomass-integrated SPEs are, therefore, expected to address the key issues of SPE (<em>e.g.</em>, low ionic conductivity, poor mechanical properties, and environmental concerns), promoting the development of safe, sustainable, and energy-dense SSLMBs. However, reviews on such perspectives are presently limited. This review summarizes the applications of renewable biomass in SPEs, from the partial to the complete substitution of synthetic polymers. The sources and properties of biomass are considered, providing a new understanding of the roles of biomass as an additive, the skeleton, and the main material of SPEs. Moreover, the correlation between biomass and the improved performances of SPEs (<em>e.g.</em>, ion conduction and mechanical properties) is discussed. The design protocols for SPEs with desirable properties are also highlighted based on the multifunctionalities of biomass, proposing potential revolutionary strategies. This perspective provides enlightenment for the rational design of biomass-based SPEs, accelerating the sustainable development of advanced energy storage devices.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":32.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/ee/d3ee01173a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The solid polymer electrolyte (SPE) as a key battery component promises advances in solid-state lithium (Li) metal batteries (SSLMBs). Biomass, with a naturally derived structure design, composition and physical/chemical properties, exhibits advantages over the traditionally synthesized polymers in SPE. Biomass-integrated SPEs are, therefore, expected to address the key issues of SPE (e.g., low ionic conductivity, poor mechanical properties, and environmental concerns), promoting the development of safe, sustainable, and energy-dense SSLMBs. However, reviews on such perspectives are presently limited. This review summarizes the applications of renewable biomass in SPEs, from the partial to the complete substitution of synthetic polymers. The sources and properties of biomass are considered, providing a new understanding of the roles of biomass as an additive, the skeleton, and the main material of SPEs. Moreover, the correlation between biomass and the improved performances of SPEs (e.g., ion conduction and mechanical properties) is discussed. The design protocols for SPEs with desirable properties are also highlighted based on the multifunctionalities of biomass, proposing potential revolutionary strategies. This perspective provides enlightenment for the rational design of biomass-based SPEs, accelerating the sustainable development of advanced energy storage devices.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).