{"title":"Curcumin restrains hepatocellular carcinoma progression depending on the regulation of the circ_0078710/miR-378b/PRIM2 axis.","authors":"Qian Chen, Hai Guo, Yan Zong, Xiaofeng Zhao","doi":"10.1080/10799893.2021.1936554","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Curcumin has shown anti-tumor activity in multiple malignancies. The aim of our study was to explore the molecular mechanism behind the anti-tumor activity of curcumin in hepatocellular carcinoma (HCC).</p><p><strong>Methods: </strong>The proliferation, migration, invasion, and apoptosis were analyzed by 5-ethynyl-2'-deoxyuridine (EDU) assay, transwell migration assay, transwell invasion assay, and flow cytometry. Western blot assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were conducted to analyze protein and RNA expression. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay were performed to confirm the interaction between microRNA-378b (miR-378b) and circular RNA_0078710 (circ_0078710) or DNA primase, polypeptide 2 (PRIM2). Tumor xenograft assay was conducted to assess the roles of curcumin and circ_0078710 <i>in vivo</i>.</p><p><strong>Results: </strong>Curcumin stimulation restrained the proliferation, migration, and invasion, and triggered the apoptosis of HCC cells. Curcumin down-regulated the expression of circ_0078710 in HCC cells in a dose-dependent manner. Circ_0078710 knockdown aggravated curcumin-mediated anti-tumor effects in HCC cells. Circ_0078710 acted as a molecular sponge for miR-378b. Circ_0078710 interference-induced effects in curcumin-stimulated HCC cells were partly abolished by the silence of miR-378b. MiR-378b bound to the 3' untranslated region (3'UTR) of PRIM2. PRIM2 overexpression partly reversed circ_0078710 interference-mediated influences in curcumin-treated HCC cells. Circ_0078710 silencing aggravated curcumin-mediated suppressive effect in tumor growth <i>in vivo</i>.</p><p><strong>Conclusions: </strong>Circ_0078710 silencing aggravated curcumin-mediated anti-tumor effects through mediating the miR-378b/PRIM2 signaling in HCC cells.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 3","pages":"313-324"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2021.1936554","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2021.1936554","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 15
Abstract
Purpose: Curcumin has shown anti-tumor activity in multiple malignancies. The aim of our study was to explore the molecular mechanism behind the anti-tumor activity of curcumin in hepatocellular carcinoma (HCC).
Methods: The proliferation, migration, invasion, and apoptosis were analyzed by 5-ethynyl-2'-deoxyuridine (EDU) assay, transwell migration assay, transwell invasion assay, and flow cytometry. Western blot assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were conducted to analyze protein and RNA expression. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay were performed to confirm the interaction between microRNA-378b (miR-378b) and circular RNA_0078710 (circ_0078710) or DNA primase, polypeptide 2 (PRIM2). Tumor xenograft assay was conducted to assess the roles of curcumin and circ_0078710 in vivo.
Results: Curcumin stimulation restrained the proliferation, migration, and invasion, and triggered the apoptosis of HCC cells. Curcumin down-regulated the expression of circ_0078710 in HCC cells in a dose-dependent manner. Circ_0078710 knockdown aggravated curcumin-mediated anti-tumor effects in HCC cells. Circ_0078710 acted as a molecular sponge for miR-378b. Circ_0078710 interference-induced effects in curcumin-stimulated HCC cells were partly abolished by the silence of miR-378b. MiR-378b bound to the 3' untranslated region (3'UTR) of PRIM2. PRIM2 overexpression partly reversed circ_0078710 interference-mediated influences in curcumin-treated HCC cells. Circ_0078710 silencing aggravated curcumin-mediated suppressive effect in tumor growth in vivo.
Conclusions: Circ_0078710 silencing aggravated curcumin-mediated anti-tumor effects through mediating the miR-378b/PRIM2 signaling in HCC cells.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.