{"title":"Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators","authors":"Jung-Ung An , Seong-Eun Kim , Deok-Kun Oh","doi":"10.1016/j.plipres.2021.101110","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Oxylipins derived mainly from C20- and C22-polyunsaturated fatty acids (PUFAs), termed </span>lipid<span><span> mediators (LMs), are essential signalling messengers involved in human physiological responses associated with homeostasis and healing process for infection and inflammation. Some LMs involved in the resolution of inflammation and infection are termed specialized pro-resolving mediators (SPMs), which are generated by human M2 macrophages or polymorphonuclear leukocytes and have the potential to protect and treat hosts from bacterial and viral infections by </span>phagocytosis<span> activation. Lipoxygenases (LOXs) biosynthesize regio- and stereoselective LMs. Thus, understanding the regio- and </span></span></span>stereoselectivities<span> of LOXs for PUFAs at a molecular level is important for the biocatalytic synthesis of diverse LMs. Here, we elucidate the catalytic mechanisms and discuss regio- and stereoselectivities and their changes of LOXs determined by insertion direction and position of the substrate and oxygen at a molecular level for the </span></span>biosynthesis<span> of diverse human LMs. Recently, the biocatalytic synthesis of PUFAs to human LMs or analogues has been conducted using microbial LOXs. Such microbial LOXs involved in the biosynthesis of LMs are expected to exert significantly higher activity and stability than human LOXs. Diverse regio- and stereoselective LOXs can be obtained from microorganisms, which represent a wealth of genomic sources. We reconstruct the biosynthetic pathways of LOX-catalyzed LMs in humans and other organisms. Furthermore, we suggest the effective methods of biocatalytic synthesis of diverse human LMs from PUFAs or glucose by using microbial LOXs, increasing the stability and activity of LOXs, combining the reactions of LOXs, and constructing metabolic pathways.</span></p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"83 ","pages":"Article 101110"},"PeriodicalIF":14.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plipres.2021.101110","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782721000266","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 24
Abstract
Oxylipins derived mainly from C20- and C22-polyunsaturated fatty acids (PUFAs), termed lipid mediators (LMs), are essential signalling messengers involved in human physiological responses associated with homeostasis and healing process for infection and inflammation. Some LMs involved in the resolution of inflammation and infection are termed specialized pro-resolving mediators (SPMs), which are generated by human M2 macrophages or polymorphonuclear leukocytes and have the potential to protect and treat hosts from bacterial and viral infections by phagocytosis activation. Lipoxygenases (LOXs) biosynthesize regio- and stereoselective LMs. Thus, understanding the regio- and stereoselectivities of LOXs for PUFAs at a molecular level is important for the biocatalytic synthesis of diverse LMs. Here, we elucidate the catalytic mechanisms and discuss regio- and stereoselectivities and their changes of LOXs determined by insertion direction and position of the substrate and oxygen at a molecular level for the biosynthesis of diverse human LMs. Recently, the biocatalytic synthesis of PUFAs to human LMs or analogues has been conducted using microbial LOXs. Such microbial LOXs involved in the biosynthesis of LMs are expected to exert significantly higher activity and stability than human LOXs. Diverse regio- and stereoselective LOXs can be obtained from microorganisms, which represent a wealth of genomic sources. We reconstruct the biosynthetic pathways of LOX-catalyzed LMs in humans and other organisms. Furthermore, we suggest the effective methods of biocatalytic synthesis of diverse human LMs from PUFAs or glucose by using microbial LOXs, increasing the stability and activity of LOXs, combining the reactions of LOXs, and constructing metabolic pathways.
期刊介绍:
The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.