4-O-Methyl Modifications of Glucuronic Acids in Xylans Are Indispensable for Substrate Discrimination by GH67 α-Glucuronidase from Bacillus halodurans C-125.
{"title":"4-<i>O</i>-Methyl Modifications of Glucuronic Acids in Xylans Are Indispensable for Substrate Discrimination by GH67 α-Glucuronidase from <i>Bacillus halodurans</i> C-125.","authors":"Haruka Yagi, Tomoko Maehara, Tsuyoshi Tanaka, Ryo Takehara, Koji Teramoto, Katsuro Yaoi, Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2017_016","DOIUrl":null,"url":null,"abstract":"<p><p>A GH67 α-glucuronidase gene derived from <i>Bacillus halodurans</i> C-125 was expressed in <i>E. coli</i> to obtain a recombinant enzyme (<i>Bh</i>GlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. <i>Bh</i>GlcA67 showed maximum activity at pH 5.4 and 45 °C. When <i>Bh</i>GlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-<i>O</i>-methyl-glucuronic acid from these substrates. <i>Bh</i>GlcA67 acted only on 4-<i>O</i>-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA<sup>3</sup>Xyl<sub>3</sub>), which has a glucuronic acid side chain with a 4-<i>O</i>-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-<i>O</i>-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA<sup>3</sup>Xyl<sub>4</sub>) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA<sup>3</sup>Xyl<sub>3</sub>). The environment for recognizing the 4-<i>O</i>-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-<i>O</i>-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-<i>O</i>-methyl group is critical for the activities of the GH67 family.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_016","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2017_016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
A GH67 α-glucuronidase gene derived from Bacillus halodurans C-125 was expressed in E. coli to obtain a recombinant enzyme (BhGlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. BhGlcA67 showed maximum activity at pH 5.4 and 45 °C. When BhGlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-O-methyl-glucuronic acid from these substrates. BhGlcA67 acted only on 4-O-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA3Xyl3), which has a glucuronic acid side chain with a 4-O-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA3Xyl4) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA3Xyl3). The environment for recognizing the 4-O-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-O-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-O-methyl group is critical for the activities of the GH67 family.
嗜盐芽孢杆菌C-125的GH67 α-葡萄糖醛酸酶对木聚糖中葡萄糖醛酸的4- o -甲基修饰是鉴定底物所必需的。
从嗜盐芽孢杆菌C-125中提取的GH67 α-葡萄糖醛酸酶基因在大肠杆菌中表达,获得重组酶BhGlcA67。利用纯化后的酶,研究了酶的酶学性质和底物特异性。BhGlcA67在pH 5.4和45℃条件下活性最高。当BhGlcA67与桦木、燕麦和棉籽木聚糖孵育时,该酶没有从这些底物中释放任何葡萄糖醛酸或4- o -甲基葡萄糖醛酸。BhGlcA67仅作用于4- o -methyl-α- d -glucuronopyranosyl-(1→2)-β- d -xylopyranosyl-(1→4)-β- d -xylopyranosyl-(1→4)-β- d -xylopyranose (MeGlcA3Xyl3),其葡萄糖醛酸侧链的非还原端有一个4- o -甲基。β-D-xylopyranosyl-(1→4)-[4- o -methyl-α-D-glucuronopyranosyl-(1→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(GlcA3Xyl3)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl (GlcA3Xyl3)。在已报道的GH67葡萄糖醛酸酶的所有晶体结构中均存在识别葡萄糖醛酸4- o -甲基的环境,并且用于识别葡萄糖醛酸4- o -甲基的氨基酸在GH67家族的一级序列中广泛保守,这表明4- o -甲基对GH67家族的活性至关重要。