Subspace exploration: Bounds on Projected Frequency Estimation.

Graham Cormode, Charlie Dickens, David P Woodruff
{"title":"Subspace exploration: Bounds on Projected Frequency Estimation.","authors":"Graham Cormode,&nbsp;Charlie Dickens,&nbsp;David P Woodruff","doi":"10.1145/3452021.3458312","DOIUrl":null,"url":null,"abstract":"<p><p>Given an <i>n</i> × <i>d</i> dimensional dataset <i>A</i>, a projection query specifies a subset <i>C</i> ⊆ [<i>d</i>] of columns which yields a new <i>n</i> × |<i>C</i>| array. We study the space complexity of computing data analysis functions over such subspaces, including heavy hitters and norms, when the subspaces are revealed only after observing the data. We show that this important class of problems is typically hard: for many problems, we show 2<sup>Ω(<i>d</i>)</sup> lower bounds. However, we present upper bounds which demonstrate space dependency better than 2 <i><sup>d</sup></i> . That is, for <i>c, c</i>' ∈ (0, 1) and a parameter <i>N</i> = 2 <i><sup>d</sup></i> an <i>N<sup>c</sup></i> -approximation can be obtained in space <math><mrow><mi>min</mi> <mrow><mo>(</mo> <mrow><msup><mi>N</mi> <mrow><msup><mi>c</mi> <mo>'</mo></msup> </mrow> </msup> <mo>,</mo> <mi>n</mi></mrow> <mo>)</mo></mrow> </mrow> </math> , showing that it is possible to improve on the naïve approach of keeping information for all 2 <i><sup>d</sup></i> subsets of <i>d</i> columns. Our results are based on careful constructions of instances using coding theory and novel combinatorial reductions that exhibit such space-approximation tradeoffs.</p>","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"2021 ","pages":"273-284"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3452021.3458312","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452021.3458312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given an n × d dimensional dataset A, a projection query specifies a subset C ⊆ [d] of columns which yields a new n × |C| array. We study the space complexity of computing data analysis functions over such subspaces, including heavy hitters and norms, when the subspaces are revealed only after observing the data. We show that this important class of problems is typically hard: for many problems, we show 2Ω(d) lower bounds. However, we present upper bounds which demonstrate space dependency better than 2 d . That is, for c, c' ∈ (0, 1) and a parameter N = 2 d an Nc -approximation can be obtained in space min ( N c ' , n ) , showing that it is possible to improve on the naïve approach of keeping information for all 2 d subsets of d columns. Our results are based on careful constructions of instances using coding theory and novel combinatorial reductions that exhibit such space-approximation tradeoffs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
子空间探索:投影频率估计的边界。
给定一个n × d维的数据集A,一个投影查询指定了一个列的子集C≠[d],该子集产生一个新的n × |C|数组。我们研究了在这些子空间上计算数据分析函数的空间复杂度,这些子空间包括重磅子空间和范数子空间,这些子空间只有在观察数据之后才会显示出来。我们证明了这类重要的问题通常是困难的:对于许多问题,我们给出了2Ω(d)下界。然而,我们提出的上界表明空间依赖性优于二维。也就是说,对于c, c'∈(0,1),参数N = 2d,可以在空间min (Nc ', N)中得到Nc -近似,这表明可以改进naïve方法来保留d列的所有2d子集的信息。我们的结果是基于使用编码理论和新颖的组合约简的实例的仔细构建,这些组合约简展示了这种空间近似权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Subspace exploration: Bounds on Projected Frequency Estimation. PODS'21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China, June 20-25, 2021 Computing Optimal Repairs for Functional Dependencies. Relational database behavior: utilizing relational discrete event systems and models Data Citation: a Computational Challenge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1