Optimizing diabetes screening frequencies for at-risk groups.

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Health Care Management Science Pub Date : 2022-03-01 Epub Date: 2021-08-06 DOI:10.1007/s10729-021-09575-z
Chou-Chun Wu, Sze-Chuan Suen
{"title":"Optimizing diabetes screening frequencies for at-risk groups.","authors":"Chou-Chun Wu,&nbsp;Sze-Chuan Suen","doi":"10.1007/s10729-021-09575-z","DOIUrl":null,"url":null,"abstract":"<p><p>There is strong evidence that diabetes is underdiagnosed in the US: the Centers for Disease Control and Prevention (CDC) estimates that approximately 25% of diabetic patients are unaware of their condition. To encourage timely diagnosis of at-risk patients, we develop screening guidelines stratified by body mass index (BMI), age, and prior test history by using a Partially Observed Markov Decision Process (POMDP) framework to provide more personalized screening frequency recommendations. We identify structural results that prove the existence of threshold solutions in our problem and allow us to determine the relative timing and frequency of screening given different risk profiles. We then use nationally representative empirical data to identify a policy that provides the optimal action (screen or wait) every six months from age 45 to 90. We find that the current screening guidelines are suboptimal, and the recommended diabetes screening policy should be stratified by age and by finer BMI thresholds than in the status quo. We identify age ranges and BMI categories for which relatively less or more screening is needed compared to the existing guidelines to help physicians target patients most at risk. Compared to the status quo, we estimate that an optimal screening policy would generate higher net monetary benefits by $3,200-$3,570 and save $120-$1,290 in health expenditures per individual in the US above age 45.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"25 1","pages":"1-23"},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10729-021-09575-z","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-021-09575-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 1

Abstract

There is strong evidence that diabetes is underdiagnosed in the US: the Centers for Disease Control and Prevention (CDC) estimates that approximately 25% of diabetic patients are unaware of their condition. To encourage timely diagnosis of at-risk patients, we develop screening guidelines stratified by body mass index (BMI), age, and prior test history by using a Partially Observed Markov Decision Process (POMDP) framework to provide more personalized screening frequency recommendations. We identify structural results that prove the existence of threshold solutions in our problem and allow us to determine the relative timing and frequency of screening given different risk profiles. We then use nationally representative empirical data to identify a policy that provides the optimal action (screen or wait) every six months from age 45 to 90. We find that the current screening guidelines are suboptimal, and the recommended diabetes screening policy should be stratified by age and by finer BMI thresholds than in the status quo. We identify age ranges and BMI categories for which relatively less or more screening is needed compared to the existing guidelines to help physicians target patients most at risk. Compared to the status quo, we estimate that an optimal screening policy would generate higher net monetary benefits by $3,200-$3,570 and save $120-$1,290 in health expenditures per individual in the US above age 45.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化高危人群的糖尿病筛查频率。
有强有力的证据表明,在美国,糖尿病未被充分诊断:疾病控制和预防中心(CDC)估计,大约25%的糖尿病患者不知道自己的病情。为了鼓励及时诊断高危患者,我们通过使用部分观察马尔可夫决策过程(POMDP)框架,制定了根据体重指数(BMI)、年龄和既往测试史分层的筛查指南,以提供更个性化的筛查频率建议。我们确定了结构结果,证明了问题中存在阈值解决方案,并允许我们确定给定不同风险概况的筛查的相对时间和频率。然后,我们使用具有全国代表性的经验数据来确定每六个月从45岁到90岁提供最佳行动(筛选或等待)的政策。我们发现目前的筛查指南是次优的,推荐的糖尿病筛查政策应该根据年龄和更精细的BMI阈值进行分层。与现有指南相比,我们确定了相对较少或更多筛查需要的年龄范围和BMI类别,以帮助医生针对风险最大的患者。与现状相比,我们估计,一个最佳的筛查政策将产生更高的净货币效益3200 - 3570美元,并节省120- 1290美元的医疗支出在美国45岁以上的个人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
期刊最新文献
Assessing the performance of Portuguese public hospitals before and during COVID-19 outbreak, with optimistic and pessimistic benchmarking approaches. A reinforcement learning approach for the online dynamic home health care scheduling problem. Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data. Forecasting to support EMS tactical planning: what is important and what is not. Health care management science for underserved populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1