A High-Fidelity 3D Micromechanical Model of Ventricular Myocardium.

David S Li, Emilio A Mendiola, Reza Avazmohammadi, Frank B Sachse, Michael S Sacks
{"title":"A High-Fidelity 3D Micromechanical Model of Ventricular Myocardium.","authors":"David S Li,&nbsp;Emilio A Mendiola,&nbsp;Reza Avazmohammadi,&nbsp;Frank B Sachse,&nbsp;Michael S Sacks","doi":"10.1007/978-3-030-78710-3_17","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) imposes a pressure overload on the right ventricle (RV), leading to myofiber hypertrophy and remodeling of the extracellular collagen fiber network. While the macroscopic behavior of healthy and post-PAH RV free wall (RVFW) tissue has been studied previously, the mechanical microenvironment that drives remodeling events in the myofibers and the extracellular matrix (ECM) remains largely unexplored. We hypothesize that multiscale computational modeling of the heart, linking cellular-scale events to tissue-scale behavior, can improve our understanding of cardiac remodeling and better identify therapeutic targets. We have developed a high-fidelity microanatomically realistic model of ventricular myocardium, combining confocal microscopy techniques, soft tissue mechanics, and finite element modeling. We match our microanatomical model to the tissue-scale mechanical response of previous studies on biaxial properties of RVFW and examine the local myofiber-ECM interactions to study fiber-specific mechanics at the scale of individual myofibers. Through this approach, we determine that the interactions occurring at the tissue scale can be accounted for by accurately representing the geometry of the myofiber-collagen arrangement at the micro scale. Ultimately, models such as these can be used to link cellular-level adaptations with organ-level adaptations to lead to the development of patient-specific treatments for PAH.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":" ","pages":"168-177"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341397/pdf/nihms-1726677.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-78710-3_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Pulmonary arterial hypertension (PAH) imposes a pressure overload on the right ventricle (RV), leading to myofiber hypertrophy and remodeling of the extracellular collagen fiber network. While the macroscopic behavior of healthy and post-PAH RV free wall (RVFW) tissue has been studied previously, the mechanical microenvironment that drives remodeling events in the myofibers and the extracellular matrix (ECM) remains largely unexplored. We hypothesize that multiscale computational modeling of the heart, linking cellular-scale events to tissue-scale behavior, can improve our understanding of cardiac remodeling and better identify therapeutic targets. We have developed a high-fidelity microanatomically realistic model of ventricular myocardium, combining confocal microscopy techniques, soft tissue mechanics, and finite element modeling. We match our microanatomical model to the tissue-scale mechanical response of previous studies on biaxial properties of RVFW and examine the local myofiber-ECM interactions to study fiber-specific mechanics at the scale of individual myofibers. Through this approach, we determine that the interactions occurring at the tissue scale can be accounted for by accurately representing the geometry of the myofiber-collagen arrangement at the micro scale. Ultimately, models such as these can be used to link cellular-level adaptations with organ-level adaptations to lead to the development of patient-specific treatments for PAH.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高保真心室心肌三维显微力学模型。
肺动脉高压(PAH)对右心室(RV)施加压力过载,导致肌纤维肥大和细胞外胶原纤维网络重塑。虽然健康和pah后RV游离壁(RVFW)组织的宏观行为已经被研究过,但驱动肌纤维和细胞外基质(ECM)重塑事件的机械微环境在很大程度上仍未被探索。我们假设心脏的多尺度计算建模,将细胞尺度事件与组织尺度行为联系起来,可以提高我们对心脏重塑的理解,并更好地确定治疗靶点。我们结合共聚焦显微镜技术、软组织力学和有限元建模,开发了一种高保真显微解剖逼真的心室心肌模型。我们将我们的微观解剖模型与之前关于RVFW双轴特性的组织尺度力学响应研究相匹配,并检查局部肌纤维- ecm相互作用,以研究单个肌纤维尺度上的纤维特异性力学。通过这种方法,我们确定在组织尺度上发生的相互作用可以通过在微观尺度上准确地表示肌纤维-胶原蛋白排列的几何形状来解释。最终,诸如此类的模型可用于将细胞水平的适应与器官水平的适应联系起来,从而开发针对多环芳烃的患者特异性治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Micro-anatomical Model of the Infarcted Left Ventricle Border Zone to Study the Influence of Collagen Undulation. On the possibility of estimating myocardial fiber architecture from cardiac strains. Prototype of a Cardiac MRI Simulator for the Training of Supervised Neural Networks Extraction of volumetric indices from echocardiography: which deep learning solution for clinical use? Automatic Aortic Valve Pathology Detection from 3-Chamber Cine MRI with Spatio-Temporal Attention Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1