首页 > 最新文献

Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH最新文献

英文 中文
Deformable Image Registration Using Vision Transformers for Cardiac Motion Estimation from Cine Cardiac MRI Images. 利用视觉变换器进行可变形图像配准,从动态心脏核磁共振成像中估计心脏运动。
Pub Date : 2023-06-01 Epub Date: 2023-06-16 DOI: 10.1007/978-3-031-35302-4_39
Roshan Reddy Upendra, Richard Simon, Suzanne M Shontz, Cristian A Linte

Accurate cardiac motion estimation is a crucial step in assessing the kinematic and contractile properties of the cardiac chambers, thereby directly quantifying the regional cardiac function, which plays an important role in understanding myocardial diseases and planning their treatment. Since the cine cardiac magnetic resonance imaging (MRI) provides dynamic, high-resolution 3D images of the heart that depict cardiac motion throughout the cardiac cycle, cardiac motion can be estimated by finding the optical flow representation between the consecutive 3D volumes from a 4D cine cardiac MRI dataset, thereby formulating it as an image registration problem. Therefore, we propose a hybrid convolutional neural network (CNN) and Vision Transformer (ViT) architecture for deformable image registration of 3D cine cardiac MRI images for consistent cardiac motion estimation. We compare the image registration results of our proposed method with those of the VoxelMorph CNN model and conventional B-spline free form deformation (FFD) non-rigid image registration algorithm. We conduct all our experiments on the open-source Automated Cardiac Diagnosis Challenge (ACDC) dataset. Our experiments show that the deformable image registration results obtained using the proposed method outperform the CNN model and the traditional FFD image registration method.

精确的心脏运动估计是评估心腔运动和收缩特性的关键步骤,从而直接量化区域心脏功能,这对了解心肌疾病和制定治疗计划起着重要作用。由于电影心脏磁共振成像(MRI)可提供动态、高分辨率的心脏三维图像,描绘出心脏在整个心动周期中的运动情况,因此可以通过从四维电影心脏磁共振成像数据集中找到连续三维体积之间的光流表示来估计心脏运动情况,从而将其表述为一个图像配准问题。因此,我们提出了一种混合卷积神经网络(CNN)和视觉变换器(ViT)架构,用于三维心脏核磁共振成像图像的可变形图像配准,以实现一致的心脏运动估计。我们将所提方法的图像配准结果与 VoxelMorph CNN 模型和传统 B 样条自由形变(FFD)非刚性图像配准算法的结果进行了比较。我们在开源的自动心脏诊断挑战赛(ACDC)数据集上进行了所有实验。实验结果表明,使用所提方法获得的可变形图像配准结果优于 CNN 模型和传统的 FFD 图像配准方法。
{"title":"Deformable Image Registration Using Vision Transformers for Cardiac Motion Estimation from Cine Cardiac MRI Images.","authors":"Roshan Reddy Upendra, Richard Simon, Suzanne M Shontz, Cristian A Linte","doi":"10.1007/978-3-031-35302-4_39","DOIUrl":"10.1007/978-3-031-35302-4_39","url":null,"abstract":"<p><p>Accurate cardiac motion estimation is a crucial step in assessing the kinematic and contractile properties of the cardiac chambers, thereby directly quantifying the regional cardiac function, which plays an important role in understanding myocardial diseases and planning their treatment. Since the cine cardiac magnetic resonance imaging (MRI) provides dynamic, high-resolution 3D images of the heart that depict cardiac motion throughout the cardiac cycle, cardiac motion can be estimated by finding the optical flow representation between the consecutive 3D volumes from a 4D cine cardiac MRI dataset, thereby formulating it as an image registration problem. Therefore, we propose a hybrid convolutional neural network (CNN) and Vision Transformer (ViT) architecture for deformable image registration of 3D cine cardiac MRI images for consistent cardiac motion estimation. We compare the image registration results of our proposed method with those of the VoxelMorph CNN model and conventional B-spline free form deformation (FFD) non-rigid image registration algorithm. We conduct all our experiments on the open-source Automated Cardiac Diagnosis Challenge (ACDC) dataset. Our experiments show that the deformable image registration results obtained using the proposed method outperform the CNN model and the traditional FFD image registration method.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76723168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Micro-anatomical Model of the Infarcted Left Ventricle Border Zone to Study the Influence of Collagen Undulation. 研究胶原褶皱影响的左心室梗死边界区微型解剖模型
Pub Date : 2023-06-01 Epub Date: 2023-06-16 DOI: 10.1007/978-3-031-35302-4_4
Emilio A Mendiola, Eric Wang, Abby Leatherman, Qian Xiang, Sunder Neelakantan, Peter Vanderslice, Reza Avazmohammadi

Myocardial infarction (MI) results in cardiac myocyte death and often initiates the formation of a fibrotic scar in the myocardium surrounded by a border zone. Myocyte loss and collagen-rich scar tissue heavily influence the biomechanical behavior of the myocardium which could lead to various cardiac diseases such as systolic heart failure and arrhythmias. Knowledge of how myocyte and collagen micro-architecture changes affect the passive mechanical behavior of the border zone remains limited. Computational modeling provides us with an invaluable tool to identify and study the mechanisms driving the biomechanical remodeling of the myocardium post-MI. We utilized a rodent model of MI and an image-based approach to characterize the three-dimensional (3-D) myocyte and collagen micro-architecture at various timepoints post-MI. Left ventricular free wall (LVFW) samples were obtained from infarcted hearts at 1-week and 4-week post-MI (n = 1 each). Samples were labeled using immunoassays to identify the extracellular matrix (ECM) and myocytes. 3-D reconstructions of the infarct border zone were developed from confocal imaging and meshed to develop high-fidelity micro-anatomically accurate finite element models. We performed a parametric study using these models to investigate the influence of collagen undulation on the passive micromechanical behavior of the myocardium under a diastolic load. Our results suggest that although parametric increases in collagen undulation elevate the strain amount experienced by the ECM in both early- and late-stage MI, the sensitivity of myocytes to such increases is reduced from early to late-stage MI. Our 3-D micro-anatomical modeling holds promise in identifying mechanisms of border zone maladaptation post-MI.

心肌梗塞(MI)会导致心肌细胞死亡,通常会在心肌中形成纤维化瘢痕,周围形成边界区。心肌细胞的丧失和富含胶原蛋白的瘢痕组织严重影响心肌的生物力学行为,从而导致各种心脏疾病,如收缩性心力衰竭和心律失常。关于心肌细胞和胶原微结构变化如何影响边界区被动机械行为的知识仍然有限。计算建模为我们提供了一种宝贵的工具,可用于识别和研究心肌梗死后心肌生物力学重塑的驱动机制。我们利用啮齿动物心肌梗死模型和基于图像的方法来描述心肌梗死后不同时间点的三维(3-D)心肌细胞和胶原微结构。从心肌梗死后 1 周和 4 周的梗死心脏中获取左心室游离壁 (LVFW) 样本(n = 1)。使用免疫测定法对样本进行标记,以识别细胞外基质(ECM)和心肌细胞。通过共焦成像对梗死边缘区进行三维重建,并将其网格化,以建立高保真微解剖精确有限元模型。我们利用这些模型进行了参数研究,以探讨胶原起伏对心肌在舒张负荷下被动微观力学行为的影响。我们的研究结果表明,虽然胶原起伏的参数化增加会使早期和晚期心肌梗死中 ECM 所承受的应变量增加,但从早期到晚期心肌梗死,心肌细胞对这种增加的敏感性会降低。我们的三维微解剖建模有望确定心肌梗死后边缘区适应不良的机制。
{"title":"A Micro-anatomical Model of the Infarcted Left Ventricle Border Zone to Study the Influence of Collagen Undulation.","authors":"Emilio A Mendiola, Eric Wang, Abby Leatherman, Qian Xiang, Sunder Neelakantan, Peter Vanderslice, Reza Avazmohammadi","doi":"10.1007/978-3-031-35302-4_4","DOIUrl":"10.1007/978-3-031-35302-4_4","url":null,"abstract":"<p><p>Myocardial infarction (MI) results in cardiac myocyte death and often initiates the formation of a fibrotic scar in the myocardium surrounded by a border zone. Myocyte loss and collagen-rich scar tissue heavily influence the biomechanical behavior of the myocardium which could lead to various cardiac diseases such as systolic heart failure and arrhythmias. Knowledge of how myocyte and collagen micro-architecture changes affect the passive mechanical behavior of the border zone remains limited. Computational modeling provides us with an invaluable tool to identify and study the mechanisms driving the biomechanical remodeling of the myocardium post-MI. We utilized a rodent model of MI and an image-based approach to characterize the three-dimensional (3-D) myocyte and collagen micro-architecture at various timepoints post-MI. Left ventricular free wall (LVFW) samples were obtained from infarcted hearts at 1-week and 4-week post-MI (n = 1 each). Samples were labeled using immunoassays to identify the extracellular matrix (ECM) and myocytes. 3-D reconstructions of the infarct border zone were developed from confocal imaging and meshed to develop high-fidelity micro-anatomically accurate finite element models. We performed a parametric study using these models to investigate the influence of collagen undulation on the passive micromechanical behavior of the myocardium under a diastolic load. Our results suggest that although parametric increases in collagen undulation elevate the strain amount experienced by the ECM in both early- and late-stage MI, the sensitivity of myocytes to such increases is reduced from early to late-stage MI. Our 3-D micro-anatomical modeling holds promise in identifying mechanisms of border zone maladaptation post-MI.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352642/pdf/nihms-1916028.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9903825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the possibility of estimating myocardial fiber architecture from cardiac strains. 从心脏应变估计心肌纤维结构的可能性。
Pub Date : 2023-06-01 Epub Date: 2023-06-16 DOI: 10.1007/978-3-031-35302-4_8
Muhammad Usman, Emilio A Mendiola, Tanmay Mukherjee, Rana Raza Mehdi, Jacques Ohayon, Prasanna G Alluri, Sakthivel Sadayappan, Gaurav Choudhary, Reza Avazmohammadi

The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.

心肌由复杂的收缩肌纤维网络组成,这些肌纤维的组织方式使心脏能够有效收缩和放松。心肌的肌纤维结构是决定心脏运动和心脏整体或器官功能的关键因素。有报告称,肺动脉高压和心肌梗塞等心脏疾病的结构重塑可能会导致心脏功能障碍,这就要求加入一种结构标记,以改进对心脏功能的评估。然而,活体量化三维肌结构已被证明具有挑战性。在这项研究中,我们使用左心室多尺度有限元模型研究了心脏应变对不同肌纤维方向的敏感性。此外,我们还提出了一种逆向建模方法,以从心脏应变预测心肌纤维结构。我们的研究结果表明,纤维取向与左心室运动学之间存在很强的相关性,证实了纤维结构是左心室收缩行为的主要决定因素。我们的逆向模型能够通过应变测量准确预测心肌纤维范围和区域纤维角度。对左心室肌纤维结构与运动之间的联系有了具体的了解,并开发出无创、可行的心肌结构表征方法,有望带来先进的左心室功能指标,并改善结构性心脏病的预后评估。
{"title":"On the possibility of estimating myocardial fiber architecture from cardiac strains.","authors":"Muhammad Usman, Emilio A Mendiola, Tanmay Mukherjee, Rana Raza Mehdi, Jacques Ohayon, Prasanna G Alluri, Sakthivel Sadayappan, Gaurav Choudhary, Reza Avazmohammadi","doi":"10.1007/978-3-031-35302-4_8","DOIUrl":"10.1007/978-3-031-35302-4_8","url":null,"abstract":"<p><p>The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478796/pdf/nihms-1922738.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10170205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prototype of a Cardiac MRI Simulator for the Training of Supervised Neural Networks 用于监督神经网络训练的心脏MRI模拟器原型
M. Varela, A. Bharath
{"title":"Prototype of a Cardiac MRI Simulator for the Training of Supervised Neural Networks","authors":"M. Varela, A. Bharath","doi":"10.1007/978-3-031-35302-4_38","DOIUrl":"https://doi.org/10.1007/978-3-031-35302-4_38","url":null,"abstract":"","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78481985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of volumetric indices from echocardiography: which deep learning solution for clinical use? 超声心动图容积指标的提取:哪种深度学习方案适合临床应用?
Han Ling, Nathan Painchaud, P. Courand, Pierre-Marc Jodoin, Damien Garcia, O. Bernard
{"title":"Extraction of volumetric indices from echocardiography: which deep learning solution for clinical use?","authors":"Han Ling, Nathan Painchaud, P. Courand, Pierre-Marc Jodoin, Damien Garcia, O. Bernard","doi":"10.1007/978-3-031-35302-4_25","DOIUrl":"https://doi.org/10.1007/978-3-031-35302-4_25","url":null,"abstract":"","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75693020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic Aortic Valve Pathology Detection from 3-Chamber Cine MRI with Spatio-Temporal Attention Maps 基于时空注意图的三腔MRI主动脉瓣病理自动检测
Y. On, K. Vimalesvaran, C. Galazis, S. Zaman, J. Howard, N. Linton, N. Peters, G. Cole, A. Bharath, M. Varela
{"title":"Automatic Aortic Valve Pathology Detection from 3-Chamber Cine MRI with Spatio-Temporal Attention Maps","authors":"Y. On, K. Vimalesvaran, C. Galazis, S. Zaman, J. Howard, N. Linton, N. Peters, G. Cole, A. Bharath, M. Varela","doi":"10.1007/978-3-031-35302-4_66","DOIUrl":"https://doi.org/10.1007/978-3-031-35302-4_66","url":null,"abstract":"","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81784139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implicit Neural Representations for Modeling of Abdominal Aortic Aneurysm Progression 腹主动脉瘤发展模型的内隐神经表征
Dieuwertje Alblas, Marie‐Claude Hofman, C. Brune, K. Yeung, J. Wolterink
Abdominal aortic aneurysms (AAAs) are progressive dilatations of the abdominal aorta that, if left untreated, can rupture with lethal consequences. Imaging-based patient monitoring is required to select patients eligible for surgical repair. In this work, we present a model based on implicit neural representations (INRs) to model AAA progression. We represent the AAA wall over time as the zero-level set of a signed distance function (SDF), estimated by a multilayer perception that operates on space and time. We optimize this INR using automatically extracted segmentation masks in longitudinal CT data. This network is conditioned on spatiotemporal coordinates and represents the AAA surface at any desired resolution at any moment in time. Using regularization on spatial and temporal gradients of the SDF, we ensure proper interpolation of the AAA shape. We demonstrate the network's ability to produce AAA interpolations with average surface distances ranging between 0.72 and 2.52 mm from images acquired at highly irregular intervals. The results indicate that our model can accurately interpolate AAA shapes over time, with potential clinical value for a more personalised assessment of AAA progression.
腹主动脉瘤(AAAs)是腹主动脉的进行性扩张,如果不及时治疗,可能会导致致命的后果。需要基于成像的患者监测来选择符合手术修复条件的患者。在这项工作中,我们提出了一个基于隐式神经表征(INRs)的模型来模拟AAA的进展。我们将AAA墙随时间表示为有符号距离函数(SDF)的零水平集,通过对空间和时间进行操作的多层感知来估计。我们使用纵向CT数据中自动提取的分割掩码来优化INR。该网络以时空坐标为条件,表示任意时刻任意分辨率的AAA曲面。对SDF的时空梯度进行正则化,保证了AAA形状的正确插值。我们证明了该网络能够从高度不规则间隔获取的图像中产生平均表面距离在0.72至2.52 mm之间的AAA插值。结果表明,我们的模型可以随着时间的推移准确地插入AAA的形状,对于更个性化的AAA进展评估具有潜在的临床价值。
{"title":"Implicit Neural Representations for Modeling of Abdominal Aortic Aneurysm Progression","authors":"Dieuwertje Alblas, Marie‐Claude Hofman, C. Brune, K. Yeung, J. Wolterink","doi":"10.48550/arXiv.2303.01069","DOIUrl":"https://doi.org/10.48550/arXiv.2303.01069","url":null,"abstract":"Abdominal aortic aneurysms (AAAs) are progressive dilatations of the abdominal aorta that, if left untreated, can rupture with lethal consequences. Imaging-based patient monitoring is required to select patients eligible for surgical repair. In this work, we present a model based on implicit neural representations (INRs) to model AAA progression. We represent the AAA wall over time as the zero-level set of a signed distance function (SDF), estimated by a multilayer perception that operates on space and time. We optimize this INR using automatically extracted segmentation masks in longitudinal CT data. This network is conditioned on spatiotemporal coordinates and represents the AAA surface at any desired resolution at any moment in time. Using regularization on spatial and temporal gradients of the SDF, we ensure proper interpolation of the AAA shape. We demonstrate the network's ability to produce AAA interpolations with average surface distances ranging between 0.72 and 2.52 mm from images acquired at highly irregular intervals. The results indicate that our model can accurately interpolate AAA shapes over time, with potential clinical value for a more personalised assessment of AAA progression.","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74981496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
SE(3) symmetry lets graph neural networks learn arterial velocity estimation from small datasets SE(3)对称性使图神经网络能够从小数据集学习动脉速度估计
J. Suk, C. Brune, J. Wolterink
{"title":"SE(3) symmetry lets graph neural networks learn arterial velocity estimation from small datasets","authors":"J. Suk, C. Brune, J. Wolterink","doi":"10.1007/978-3-031-35302-4_46","DOIUrl":"https://doi.org/10.1007/978-3-031-35302-4_46","url":null,"abstract":"","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79650567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Generating Short-Axis DENSE Images from 4D XCAT Phantoms: A Proof-of-Concept Study 从4D XCAT幻影生成短轴密集图像:概念验证研究
Hugo Barbaroux, M. Loecher, Karl P. Kunze, R. Neji, Daniel B. Ennis, S. Nielles-Vallespin, A. Scott, A. Young
{"title":"Generating Short-Axis DENSE Images from 4D XCAT Phantoms: A Proof-of-Concept Study","authors":"Hugo Barbaroux, M. Loecher, Karl P. Kunze, R. Neji, Daniel B. Ennis, S. Nielles-Vallespin, A. Scott, A. Young","doi":"10.1007/978-3-031-35302-4_43","DOIUrl":"https://doi.org/10.1007/978-3-031-35302-4_43","url":null,"abstract":"","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75820556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Estimation of Left Ventricular Diastolic Chamber Stiffness: Application to Patients with Heart Failure and Aortic Regurgitation 左心室舒张室刚度的自动评估:在心力衰竭和主动脉瓣反流患者中的应用
A. Hasaballa, D. Zhao, V. Wang, T. B. Gamage, S. Creamer, G. Quill, P. Ruygrok, S. Arri, R. Doughty, M. Legget, A. Young, M. Nash
{"title":"Automated Estimation of Left Ventricular Diastolic Chamber Stiffness: Application to Patients with Heart Failure and Aortic Regurgitation","authors":"A. Hasaballa, D. Zhao, V. Wang, T. B. Gamage, S. Creamer, G. Quill, P. Ruygrok, S. Arri, R. Doughty, M. Legget, A. Young, M. Nash","doi":"10.1007/978-3-031-35302-4_64","DOIUrl":"https://doi.org/10.1007/978-3-031-35302-4_64","url":null,"abstract":"","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80399678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1