{"title":"Inhibition of hypoxia-inducible factor-1 by salidroside in an <i>in vitro</i> model of choroidal neovascularization.","authors":"Haitao Yang, Qingwu Yang, Linfei Zheng","doi":"10.1080/15569527.2021.1973023","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As a characteristic of age-related macular degeneration (AMD), choroidal neovascularization (CNV) causes severe vision loss. The current treatment has limited efficacy. This study was to investigate effects of Salidroside against CNV and explore its underlying mechanisms.</p><p><strong>Methods: </strong>RF/6A cells were treated with 200 mM cobalt chloride (CoCl<sub>2</sub>) for 6 hr to mimic hypoxic condition. Cells were then treated with Salidroside at 10, 30, and 100 µM for 24 hr. Cells treated with DMSO were used as negative control. The cell proliferation was assessed using 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium-bromid assay. The tube formation was investigated on Matrigel. The cell migration was measured by a Transwell assay. RT-qPCR was used to detect the gene expression. Immuohistochemistry and western blot were used to detect the expression of proteins.</p><p><strong>Results: </strong>Salidroside significantly inhibited the cell migration and tube formation activity of RF/6A cells under hypoxia. Moreover, Salidroside reduced the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF-1) in RF/6A cells.</p><p><strong>Conclusions: </strong>Our data suggested that Salidroside could be a potential novel therapeutic agent against CNV.</p>","PeriodicalId":11023,"journal":{"name":"Cutaneous and Ocular Toxicology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cutaneous and Ocular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15569527.2021.1973023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose: As a characteristic of age-related macular degeneration (AMD), choroidal neovascularization (CNV) causes severe vision loss. The current treatment has limited efficacy. This study was to investigate effects of Salidroside against CNV and explore its underlying mechanisms.
Methods: RF/6A cells were treated with 200 mM cobalt chloride (CoCl2) for 6 hr to mimic hypoxic condition. Cells were then treated with Salidroside at 10, 30, and 100 µM for 24 hr. Cells treated with DMSO were used as negative control. The cell proliferation was assessed using 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium-bromid assay. The tube formation was investigated on Matrigel. The cell migration was measured by a Transwell assay. RT-qPCR was used to detect the gene expression. Immuohistochemistry and western blot were used to detect the expression of proteins.
Results: Salidroside significantly inhibited the cell migration and tube formation activity of RF/6A cells under hypoxia. Moreover, Salidroside reduced the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF-1) in RF/6A cells.
Conclusions: Our data suggested that Salidroside could be a potential novel therapeutic agent against CNV.
期刊介绍:
Cutaneous and Ocular Toxicology is an international, peer-reviewed journal that covers all types of harm to cutaneous and ocular systems. Areas of particular interest include pharmaceutical and medical products; consumer, personal care, and household products; and issues in environmental and occupational exposures.
In addition to original research papers, reviews and short communications are invited, as well as concise, relevant, and critical reviews of topics of contemporary significance.