The effect of 26 versus 29-inch wheel diameter in the transmission of vibrations in cross-country mountain biking.

IF 2 3区 医学 Q3 ENGINEERING, BIOMEDICAL Sports Biomechanics Pub Date : 2024-10-01 Epub Date: 2021-08-25 DOI:10.1080/14763141.2021.1968480
Enrique Moreno Mañas, Salvador Llana-Belloch, Vicent Úbeda-Pastor, Xavier Garcia-Massó
{"title":"The effect of 26 versus 29-inch wheel diameter in the transmission of vibrations in cross-country mountain biking.","authors":"Enrique Moreno Mañas, Salvador Llana-Belloch, Vicent Úbeda-Pastor, Xavier Garcia-Massó","doi":"10.1080/14763141.2021.1968480","DOIUrl":null,"url":null,"abstract":"<p><p>Vibrations experienced by cyclists can affect their performance and health. We analysed the vibrations transmitted by mountain bike (26 or 29-inch wheels), in a 2,110 m circuit with a sample of 55 cyclists. The results indicate that the 29\"-wheel increases speed (<i>p</i> < 0.001) and thus performance but it also increases exposure to vibrations as the root mean square (RMS) indicate (<i>p</i> = 0.001). The wheel diameter significantly affected the accelerometer-related dependent variables (<i>p < </i>0.01), specifically seen in the RMS variable (<i>p < </i>0.01). Regarding vibration transmission variables, it was found that the LW/FH, RW/FH, LA/RH, and RA/RH ratios were higher in the 29\" bicycle than in 26\" one. Average heart rate (<i>p</i> = 0.01) and maximum heart rate (<i>p</i> < 0.01) values were higher for the 29\" bike with no significant differences in the average power values recorded. In conclusion, bicycles with 29\" wheels transmit higher levels of vibration to riders.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1651-1662"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.1968480","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vibrations experienced by cyclists can affect their performance and health. We analysed the vibrations transmitted by mountain bike (26 or 29-inch wheels), in a 2,110 m circuit with a sample of 55 cyclists. The results indicate that the 29"-wheel increases speed (p < 0.001) and thus performance but it also increases exposure to vibrations as the root mean square (RMS) indicate (p = 0.001). The wheel diameter significantly affected the accelerometer-related dependent variables (p < 0.01), specifically seen in the RMS variable (p < 0.01). Regarding vibration transmission variables, it was found that the LW/FH, RW/FH, LA/RH, and RA/RH ratios were higher in the 29" bicycle than in 26" one. Average heart rate (p = 0.01) and maximum heart rate (p < 0.01) values were higher for the 29" bike with no significant differences in the average power values recorded. In conclusion, bicycles with 29" wheels transmit higher levels of vibration to riders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
26 和 29 英寸车轮直径对越野山地自行车振动传递的影响。
骑自行车的人所经历的振动会影响他们的表现和健康。我们以 55 名自行车运动员为样本,分析了山地自行车(26 或 29 英寸车轮)在 2110 米赛道上传递的振动。结果表明,29 英寸车轮能提高速度(p p = 0.001)。车轮直径对加速度计相关因变量有明显影响(p 0.01),特别是在有效值变量中(p 0.01)。在振动传递变量方面,29 英寸自行车的 LW/FH、RW/FH、LA/RH 和 RA/RH 比率高于 26 英寸自行车。平均心率(p = 0.01)和最大心率(p = 0.01)均高于 26 "自行车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sports Biomechanics
Sports Biomechanics 医学-工程:生物医学
CiteScore
5.70
自引率
9.10%
发文量
135
审稿时长
>12 weeks
期刊介绍: Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic). Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly. Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.
期刊最新文献
Association between T2 relaxation time and biomechanical loading of the anterior cruciate ligament in healthy individuals. A comparison of maximal isometric force in the first pull, transition and second pull of the clean and their contribution to predict performance in national and international level weightlifters. Angular motion of the thorax during the golf swing: a comparison of two orientation angle sequences. Associations between force-velocity-power profile in sprinting and ballistic lower limb tests in adolescent elite footballers. Differences in kinematics, kinetics, and muscle activity between underwater dolphin kicking and flutter kicking: multiple approaches using three-dimensional motion analysis, electromyography, and hydrodynamic simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1