Gang Li, Niravkumar A Patel, Weiqiang Liu, Di Wu, Karun Sharma, Kevin Cleary, Jan Fritz, Iulian Iordachita
{"title":"A Fully Actuated Body-Mounted Robotic Assistant for MRI-Guided Low Back Pain Injection.","authors":"Gang Li, Niravkumar A Patel, Weiqiang Liu, Di Wu, Karun Sharma, Kevin Cleary, Jan Fritz, Iulian Iordachita","doi":"10.1109/icra40945.2020.9197534","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reports the development of a fully actuated body-mounted robotic assistant for MRI-guided low back pain injection. The robot is designed with a 4-DOF needle alignment module and a 2-DOF remotely actuated needle driver module. The 6-DOF fully actuated robot can operate inside the scanner bore during imaging; hence, minimizing the need of moving the patient in or out of the scanner during the procedure, and thus potentially reducing the procedure time and streamlining the workflow. The robot is built with a lightweight and compact structure that can be attached directly to the patient's lower back using straps; therefore, attenuating the effect of patient motion by moving with the patient. The novel remote actuation design of the needle driver module with beaded chain transmission can reduce the weight and profile on the patient, as well as minimize the imaging degradation caused by the actuation electronics. The free space positioning accuracy of the system was evaluated with an optical tracking system, demonstrating the mean absolute errors (MAE) of the tip position to be 0.99±0.46 mm and orientation to be 0.99±0.65°. Qualitative imaging quality evaluation was performed on a human volunteer, revealing minimal visible image degradation that should not affect the procedure. The mounting stability of the system was assessed on a human volunteer, indicating the 3D position variation of target movement with respect to the robot frame to be less than 0.7 mm.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icra40945.2020.9197534","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra40945.2020.9197534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper reports the development of a fully actuated body-mounted robotic assistant for MRI-guided low back pain injection. The robot is designed with a 4-DOF needle alignment module and a 2-DOF remotely actuated needle driver module. The 6-DOF fully actuated robot can operate inside the scanner bore during imaging; hence, minimizing the need of moving the patient in or out of the scanner during the procedure, and thus potentially reducing the procedure time and streamlining the workflow. The robot is built with a lightweight and compact structure that can be attached directly to the patient's lower back using straps; therefore, attenuating the effect of patient motion by moving with the patient. The novel remote actuation design of the needle driver module with beaded chain transmission can reduce the weight and profile on the patient, as well as minimize the imaging degradation caused by the actuation electronics. The free space positioning accuracy of the system was evaluated with an optical tracking system, demonstrating the mean absolute errors (MAE) of the tip position to be 0.99±0.46 mm and orientation to be 0.99±0.65°. Qualitative imaging quality evaluation was performed on a human volunteer, revealing minimal visible image degradation that should not affect the procedure. The mounting stability of the system was assessed on a human volunteer, indicating the 3D position variation of target movement with respect to the robot frame to be less than 0.7 mm.