In vivo and in vitro impact of miRNA-153 on the suppression of cell growth apoptosis through mTORC2 signaling pathway in breast cancer.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Receptors and Signal Transduction Pub Date : 2022-08-01 Epub Date: 2021-08-29 DOI:10.1080/10799893.2021.1970766
Haimei Liu, Hongyan Zang, Jilin Kong, Liguo Gong
{"title":"<i>In vivo</i> and <i>in vitro</i> impact of miRNA-153 on the suppression of cell growth apoptosis through mTORC2 signaling pathway in breast cancer.","authors":"Haimei Liu,&nbsp;Hongyan Zang,&nbsp;Jilin Kong,&nbsp;Liguo Gong","doi":"10.1080/10799893.2021.1970766","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effects and mechanism of miRNA-153 on breast cancer cells <i>in vitro</i> and <i>in vivo</i>.</p><p><strong>Material and methods: </strong>The cells and mice were divided into five groups: miRNA-153 mimic, miRNA-153 NC, miRNA-153 inhibitor, miRNA-153 inhibitor-NC, and blank control groups. The real-time PCR and western blot were used to detect the rictor expression regulated by miRNA-153. The western blot was used to explore the expression levels of p-Akt Ser473, p-SGK1 Ser422, and p-FOXO1 Thr24 regulated by miRNA-153. The H&E stain was used to detect the morphology and vitality of tumor cells. Flow cytometry analysis or TUNEL detection was used to evaluate the apoptosis of tumor cells.</p><p><strong>Results: </strong>MiRNA-153 was significantly reduced in breast cancer cell lines. The real-time PCR and western blot assay suggested that the miRNA-153 downregulation of rictor expression, which was correlated with the antitumor effects both <i>in vitro</i> and <i>in vivo</i>. The western blot assay also showed that the expression levels of p-Akt Ser473, p-SGK1 Ser422, and p-FOXO1 Thr24 were largely reduced in miRNA-153 treated group, which indicated that miRNA-153 inhibited breast cancer growth by regulation of mTORC2 signaling pathway. The H&E stain demonstrated that the morphology and vitality of tumor cells in tumor tissues were influenced in miRNA-153 mimic treated group. The TUNEL detection also showed a great quantity of apoptotic cells in the miRNA-153 mimic group.</p><p><strong>Conclusions: </strong>All these results uncovering that the miRNA-153 inhibited breast cancer growth <i>via</i> regulation of mTORC2 signaling pathway, which provided breast cancer treatment a novel direction.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 4","pages":"390-398"},"PeriodicalIF":2.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2021.1970766","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To investigate the effects and mechanism of miRNA-153 on breast cancer cells in vitro and in vivo.

Material and methods: The cells and mice were divided into five groups: miRNA-153 mimic, miRNA-153 NC, miRNA-153 inhibitor, miRNA-153 inhibitor-NC, and blank control groups. The real-time PCR and western blot were used to detect the rictor expression regulated by miRNA-153. The western blot was used to explore the expression levels of p-Akt Ser473, p-SGK1 Ser422, and p-FOXO1 Thr24 regulated by miRNA-153. The H&E stain was used to detect the morphology and vitality of tumor cells. Flow cytometry analysis or TUNEL detection was used to evaluate the apoptosis of tumor cells.

Results: MiRNA-153 was significantly reduced in breast cancer cell lines. The real-time PCR and western blot assay suggested that the miRNA-153 downregulation of rictor expression, which was correlated with the antitumor effects both in vitro and in vivo. The western blot assay also showed that the expression levels of p-Akt Ser473, p-SGK1 Ser422, and p-FOXO1 Thr24 were largely reduced in miRNA-153 treated group, which indicated that miRNA-153 inhibited breast cancer growth by regulation of mTORC2 signaling pathway. The H&E stain demonstrated that the morphology and vitality of tumor cells in tumor tissues were influenced in miRNA-153 mimic treated group. The TUNEL detection also showed a great quantity of apoptotic cells in the miRNA-153 mimic group.

Conclusions: All these results uncovering that the miRNA-153 inhibited breast cancer growth via regulation of mTORC2 signaling pathway, which provided breast cancer treatment a novel direction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miRNA-153通过mTORC2信号通路抑制乳腺癌细胞生长凋亡的体内外影响
目的:探讨miRNA-153在体外和体内对乳腺癌细胞的作用及其机制。材料和方法:将细胞和小鼠分为5组:miRNA-153模拟组、miRNA-153 NC组、miRNA-153抑制剂组、miRNA-153抑制剂NC组和空白对照组。采用real-time PCR和western blot检测miRNA-153调控的载体表达情况。western blot检测miRNA-153调控的p-Akt Ser473、p-SGK1 Ser422、p- fox01 Thr24的表达水平。H&E染色法检测肿瘤细胞形态和活力。采用流式细胞术或TUNEL检测检测肿瘤细胞凋亡情况。结果:MiRNA-153在乳腺癌细胞系中显著降低。real-time PCR和western blot检测结果显示,miRNA-153表达下调与体外和体内抗肿瘤作用相关。western blot检测还显示,miRNA-153处理组p-Akt Ser473、p-SGK1 Ser422、p-FOXO1 Thr24的表达水平大幅降低,表明miRNA-153通过调控mTORC2信号通路抑制乳腺癌生长。H&E染色显示miRNA-153模拟物处理组肿瘤组织中肿瘤细胞的形态和活力受到影响。TUNEL检测也显示miRNA-153模拟物组存在大量凋亡细胞。结论:这些结果揭示了miRNA-153通过调控mTORC2信号通路抑制乳腺癌生长,为乳腺癌治疗提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Receptors and Signal Transduction
Journal of Receptors and Signal Transduction 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services: BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.
期刊最新文献
Influencing hair regrowth with EGCG by targeting glycogen synthase kinase-3β activity: a molecular dynamics study. Focusing on Keap1, IKKβ, and Bcl2 proteins: predicted targets of stigmasterol in neurodegeneration. Quest for discovering novel CDK12 inhibitor. Computational insights into potent USP5 inhibitors based on multistep virtual screening and molecular dynamics simulation. Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated in silico and in vitro exploration using isolated pancreatic islets of C57BL/6J mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1