Mehmet Alkanat, Hafize Özdemir Alkanat, Egemen Akgün
{"title":"Effects of menstrual cycle on divided attention in dual-task performance.","authors":"Mehmet Alkanat, Hafize Özdemir Alkanat, Egemen Akgün","doi":"10.1080/08990220.2021.1968370","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Monthly hormonal fluctuation in women causes changes in peripheral systems and central nervous system structure and functions. In this study, we investigated the effects of menstrual cycle periods in women on attention during multitasking. Single and dual task conditions were tested in different menstrual cycle periods.</p><p><strong>Materials and methods: </strong>A total of forty women with regular menstrual cycles participated in this study. They were not any type of medication or hormonal treatment. Fine motor skills and Go/No-go tasks were performed on the 10th day of the late follicular phase, and then the tests were repeated on the 20th day of the late luteal phase. Fine motor tasks were performed by Annett's peg-moving test. Auditory stimuli were used in Go/No-go task. In dual tasks, both tasks were performed simultaneously.</p><p><strong>Results: </strong>There was no difference between follicular and luteal phases in single fine motor and Go/No-go task. In dual task condition Go/No-go task % error rate decreased in the luteal phase. Similarly, Go/No-go task reaction time decreased in the luteal phase. Non-dominant hand performance was increased in the luteal phase during the dual-task condition compared to the follicular phase.</p><p><strong>Conclusions: </strong>When these results are evaluated together, declining error rates and reaction times indicates women successfully multitask in the luteal phase in dual tasks condition. This suggests that divided attention in women leads to better performance in the luteal phase than in the follicular phase.</p>","PeriodicalId":49498,"journal":{"name":"Somatosensory and Motor Research","volume":"38 4","pages":"287-293"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatosensory and Motor Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08990220.2021.1968370","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose: Monthly hormonal fluctuation in women causes changes in peripheral systems and central nervous system structure and functions. In this study, we investigated the effects of menstrual cycle periods in women on attention during multitasking. Single and dual task conditions were tested in different menstrual cycle periods.
Materials and methods: A total of forty women with regular menstrual cycles participated in this study. They were not any type of medication or hormonal treatment. Fine motor skills and Go/No-go tasks were performed on the 10th day of the late follicular phase, and then the tests were repeated on the 20th day of the late luteal phase. Fine motor tasks were performed by Annett's peg-moving test. Auditory stimuli were used in Go/No-go task. In dual tasks, both tasks were performed simultaneously.
Results: There was no difference between follicular and luteal phases in single fine motor and Go/No-go task. In dual task condition Go/No-go task % error rate decreased in the luteal phase. Similarly, Go/No-go task reaction time decreased in the luteal phase. Non-dominant hand performance was increased in the luteal phase during the dual-task condition compared to the follicular phase.
Conclusions: When these results are evaluated together, declining error rates and reaction times indicates women successfully multitask in the luteal phase in dual tasks condition. This suggests that divided attention in women leads to better performance in the luteal phase than in the follicular phase.
期刊介绍:
Somatosensory & Motor Research publishes original, high-quality papers that encompass the entire range of investigations related to the neural bases for somatic sensation, somatic motor function, somatic motor integration, and modeling thereof. Comprising anatomical, physiological, biochemical, pharmacological, behavioural, and psychophysical studies, Somatosensory & Motor Research covers all facets of the peripheral and central processes underlying cutaneous sensation, and includes studies relating to afferent and efferent mechanisms of deep structures (e.g., viscera, muscle). Studies of motor systems at all levels of the neuraxis are covered, but reports restricted to non-neural aspects of muscle generally would belong in other journals.