Multi-model fusion of classifiers for blood pressure estimation

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2021-09-01 DOI:10.1049/syb2.12033
Qi Ye, Bingo Wing-Kuen Ling, Nuo Xu, Yuxin Lin, Lingyue Hu
{"title":"Multi-model fusion of classifiers for blood pressure estimation","authors":"Qi Ye,&nbsp;Bingo Wing-Kuen Ling,&nbsp;Nuo Xu,&nbsp;Yuxin Lin,&nbsp;Lingyue Hu","doi":"10.1049/syb2.12033","DOIUrl":null,"url":null,"abstract":"<p>Prehypertension is a new risky disease defined in the seventh report issued by the Joint National Commission. Hence, detecting prehypertension in time plays a very important role in protecting human lives. This study proposes a method for categorising blood pressure values into two classes, namely the class of healthy blood pressure values and the class of prehypertension blood pressure values, as well as estimating the blood pressure values continuously only by employing photoplethysmograms. First, the denoising of photoplethysmograms is performed via a discrete cosine transform approach. Then, the features of the photoplethysmograms in both the time domain and the frequency domain are extracted. Next, the feature vectors are categorised into the two classes of blood pressure values by a multi-model fusion of the classifiers. Here, the support vector machine, the random forest and the <i>K</i>-nearest neighbour classifier are employed for performing the fusion. There are two types of blood pressure values. They are the systolic blood pressure values and the diastolic blood pressure values. For each class and each type of blood pressure values, support vector regression is used to estimate the blood pressure values. Since different classes and different types of blood pressure values are considered separately, the proposed method achieves an accurate estimation. The computed numerical simulation results show that the proposed method based on the multi-model fusion of the classifiers achieves both higher classification accuracy and higher regression accuracy than the individual classification methods.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"15 6","pages":"184-191"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8c/00/SYB2-15-184.PMC8675793.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Prehypertension is a new risky disease defined in the seventh report issued by the Joint National Commission. Hence, detecting prehypertension in time plays a very important role in protecting human lives. This study proposes a method for categorising blood pressure values into two classes, namely the class of healthy blood pressure values and the class of prehypertension blood pressure values, as well as estimating the blood pressure values continuously only by employing photoplethysmograms. First, the denoising of photoplethysmograms is performed via a discrete cosine transform approach. Then, the features of the photoplethysmograms in both the time domain and the frequency domain are extracted. Next, the feature vectors are categorised into the two classes of blood pressure values by a multi-model fusion of the classifiers. Here, the support vector machine, the random forest and the K-nearest neighbour classifier are employed for performing the fusion. There are two types of blood pressure values. They are the systolic blood pressure values and the diastolic blood pressure values. For each class and each type of blood pressure values, support vector regression is used to estimate the blood pressure values. Since different classes and different types of blood pressure values are considered separately, the proposed method achieves an accurate estimation. The computed numerical simulation results show that the proposed method based on the multi-model fusion of the classifiers achieves both higher classification accuracy and higher regression accuracy than the individual classification methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模型融合的血压估计分类器
高血压前期是全国联合委员会第七次报告中定义的一种新的危险疾病。因此,及时发现高血压前期对保护人类生命具有十分重要的作用。本研究提出了一种将血压值分为健康血压值和高血压前期血压值两类的方法,并采用光容积描记图连续估计血压值。首先,通过离散余弦变换方法对光电容积图进行去噪。然后,提取光容积图的时域和频域特征;接下来,通过分类器的多模型融合将特征向量分为两类血压值。在这里,使用支持向量机、随机森林和k近邻分类器进行融合。血压值有两种类型。它们是收缩压值和舒张压值。对于每一类和每一类血压值,使用支持向量回归估计血压值。由于不同类别和不同类型的血压值是分开考虑的,因此该方法可以实现准确的估计。数值模拟结果表明,基于多模型融合的分类器分类方法比单个分类方法具有更高的分类精度和回归精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
Identification of CCR7 and CBX6 as key biomarkers in abdominal aortic aneurysm: Insights from multi-omics data and machine learning analysis. Identification of co-localised transcription factors based on paired motifs analysis. DDANet: A deep dilated attention network for intracerebral haemorrhage segmentation. Human essential gene identification based on feature fusion and feature screening. Inference and analysis of cell-cell communication of non-myeloid circulating cells in late sepsis based on single-cell RNA-seq.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1