Alexander C. Forse , Céline Merlet , Clare P. Grey , John M. Griffin
{"title":"NMR studies of adsorption and diffusion in porous carbonaceous materials","authors":"Alexander C. Forse , Céline Merlet , Clare P. Grey , John M. Griffin","doi":"10.1016/j.pnmrs.2021.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Porous carbonaceous materials have many important industrial applications including energy storage, water purification, and adsorption of volatile organic compounds. Most of their applications rely upon the adsorption of molecules or ions within the interior pore volume of the carbon particles. Understanding the behaviour and properties of adsorbate species on the molecular level is therefore key for optimising porous carbon materials, but this is very challenging owing to the complexity of the disordered carbon structure and the presence of multiple phases in the system. In recent years, NMR spectroscopy has emerged as one of the few experimental techniques that can resolve adsorbed species from those outside the pore network. Adsorbed, or “in-pore” species are shielded with respect to their free (or “ex-pore”) counterparts. This shielding effect arises primarily due to ring currents in the carbon structure in the presence of a magnetic field, such that the observed chemical shift differences upon adsorption are independent of the observed nucleus to a first approximation. Theoretical modelling has played an important role in rationalising and explaining these experimental observations. Together, experiments and simulations have enabled a large amount of information to be gained on the adsorption and diffusion of adsorbed species, as well as on the structural and magnetic properties of the porous carbon adsorbent. Here, we review the methodological developments and applications of NMR spectroscopy and related modelling in this field, and provide perspectives on possible future applications and research directions.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"124 ","pages":"Pages 57-84"},"PeriodicalIF":7.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2021.03.003","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656521000121","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 14
Abstract
Porous carbonaceous materials have many important industrial applications including energy storage, water purification, and adsorption of volatile organic compounds. Most of their applications rely upon the adsorption of molecules or ions within the interior pore volume of the carbon particles. Understanding the behaviour and properties of adsorbate species on the molecular level is therefore key for optimising porous carbon materials, but this is very challenging owing to the complexity of the disordered carbon structure and the presence of multiple phases in the system. In recent years, NMR spectroscopy has emerged as one of the few experimental techniques that can resolve adsorbed species from those outside the pore network. Adsorbed, or “in-pore” species are shielded with respect to their free (or “ex-pore”) counterparts. This shielding effect arises primarily due to ring currents in the carbon structure in the presence of a magnetic field, such that the observed chemical shift differences upon adsorption are independent of the observed nucleus to a first approximation. Theoretical modelling has played an important role in rationalising and explaining these experimental observations. Together, experiments and simulations have enabled a large amount of information to be gained on the adsorption and diffusion of adsorbed species, as well as on the structural and magnetic properties of the porous carbon adsorbent. Here, we review the methodological developments and applications of NMR spectroscopy and related modelling in this field, and provide perspectives on possible future applications and research directions.
期刊介绍:
Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.