首页 > 最新文献

Progress in Nuclear Magnetic Resonance Spectroscopy最新文献

英文 中文
The Dissolution-Dynamic Nuclear Polarization experiment 溶解-动态核极化实验
IF 6.1 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-09 DOI: 10.1016/j.pnmrs.2026.101598
Benno Meier
Dissolution-Dynamic Nuclear Polarization (D-DNP) addresses the most pressing issue of nuclear magnetic resonance spectroscopy - low sensitivity. In D-DNP the analyte is mixed with a radical in a glass-forming matrix. This substrate is frozen and kept at low temperature (<100 K) and a magnetic field of several Tesla. By using microwave irradiation, polarization is transferred from electron spins to nuclear spins. The substrate is then liquefied, and the liquid-state signal of the nuclear spins is observed in a high-resolution nuclear magnetic resonance (NMR) magnet or a magnetic resonance imaging scanner. The D-DNP technique has enabled spectacular experiments, such as the in vivo observation of human metabolism. However, unlike other sensitivity enhancement methodologies, such as cryoprobes or magic angle spinning (MAS) DNP, D-DNP is not applied broadly in NMR spectroscopy at present. Here, we describe (i) the gains of an ideal D-DNP experiment for NMR spectroscopy, and contrast them with the real implementations of the D-DNP experiment available today, with a focus on applications in spectroscopy. We review principles of (ii) the dynamic nuclear polarization step and (iii) the sample transfer. We argue (iv) that stringent automation is essential for broader adaptation of the D-DNP experiment.
溶解-动态核极化(D-DNP)解决了核磁共振波谱学中最紧迫的问题-低灵敏度。在D-DNP中,分析物与玻璃形成基质中的自由基混合。这种衬底被冷冻并保存在低温(100 K)和几个特斯拉的磁场中。利用微波辐照,极化从电子自旋转移到核自旋。然后将基板液化,并在高分辨率核磁共振(NMR)磁体或磁共振成像扫描仪中观察核自旋的液态信号。D-DNP技术已经实现了壮观的实验,如人体代谢的体内观察。然而,与低温探针或魔角旋转(MAS) DNP等其他灵敏度增强方法不同,D-DNP目前在核磁共振波谱学中的应用并不广泛。在这里,我们描述(i)一个理想的D-DNP实验在核磁共振光谱中的增益,并将其与目前可用的D-DNP实验的实际实现进行对比,重点是在光谱学中的应用。我们回顾了(ii)动态核极化步骤和(iii)样品转移的原理。我们认为(iv)严格的自动化对于更广泛地适应D-DNP实验是必不可少的。
{"title":"The Dissolution-Dynamic Nuclear Polarization experiment","authors":"Benno Meier","doi":"10.1016/j.pnmrs.2026.101598","DOIUrl":"https://doi.org/10.1016/j.pnmrs.2026.101598","url":null,"abstract":"Dissolution-Dynamic Nuclear Polarization (D-DNP) addresses the most pressing issue of nuclear magnetic resonance spectroscopy - low sensitivity. In D-DNP the analyte is mixed with a radical in a glass-forming matrix. This substrate is frozen and kept at low temperature (&lt;100 K) and a magnetic field of several Tesla. By using microwave irradiation, polarization is transferred from electron spins to nuclear spins. The substrate is then liquefied, and the liquid-state signal of the nuclear spins is observed in a high-resolution nuclear magnetic resonance (NMR) magnet or a magnetic resonance imaging scanner. The D-DNP technique has enabled spectacular experiments, such as the <ce:italic>in vivo</ce:italic> observation of human metabolism. However, unlike other sensitivity enhancement methodologies, such as cryoprobes or magic angle spinning (MAS) DNP, D-DNP is not applied broadly in NMR spectroscopy at present. Here, we describe (i) the gains of an ideal D-DNP experiment for NMR spectroscopy, and contrast them with the real implementations of the D-DNP experiment available today, with a focus on applications in spectroscopy. We review principles of (ii) the dynamic nuclear polarization step and (iii) the sample transfer. We argue (iv) that stringent automation is essential for broader adaptation of the D-DNP experiment.","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"34 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR structure study of DNA G-quadruplexes and ligand complexes DNA g -四络合物和配体配合物的核磁共振结构研究
IF 6.1 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-01-31 DOI: 10.1016/j.pnmrs.2026.101597
Jonathan Dickerhoff, Danzhou Yang
{"title":"NMR structure study of DNA G-quadruplexes and ligand complexes","authors":"Jonathan Dickerhoff, Danzhou Yang","doi":"10.1016/j.pnmrs.2026.101597","DOIUrl":"https://doi.org/10.1016/j.pnmrs.2026.101597","url":null,"abstract":"","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"93 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moving NMR infrastructures to remote access capabilities 将NMR基础设施迁移到远程访问功能
IF 6.1 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-01-21 DOI: 10.1016/j.pnmrs.2026.101595
James Tolchard, Tanguy Le Marchand, Ruud L.E.G. Aspers, Gyula Batta, Burkhard Bechinger, Ulrika Brath, Styliani A. Chasapi, Ana Čikoš, Kornél Ecsedi, Adrien Favier, Ana Sofia D. Ferreira, Radovan Fiala, Panagiota D. Georgiopoulou, Jennifer S. Gómez, Kristaps Jaudzems, Göran Karlsson, Arno P.M. Kentgens, Sander F.H. Lambregts, Francesca Morelli, Frans A.A. Mulder, Sivanandam V. Natarajan, Cecilia Persson, Roberta Pierattelli, Miquel Pons, Jesus Raya, Christina Redfield, Vilko Smrečki, Georgios A. Spyroulias, Julien Trébosc, Alicia Vallet, Carine van Heijenoort, Hugo van Ingen, Thomas Vosegaard, Julia Wirmer-Bartoschek, Harald Schwalbe, Anne Lesage, Guido Pintacuda
{"title":"Moving NMR infrastructures to remote access capabilities","authors":"James Tolchard, Tanguy Le Marchand, Ruud L.E.G. Aspers, Gyula Batta, Burkhard Bechinger, Ulrika Brath, Styliani A. Chasapi, Ana Čikoš, Kornél Ecsedi, Adrien Favier, Ana Sofia D. Ferreira, Radovan Fiala, Panagiota D. Georgiopoulou, Jennifer S. Gómez, Kristaps Jaudzems, Göran Karlsson, Arno P.M. Kentgens, Sander F.H. Lambregts, Francesca Morelli, Frans A.A. Mulder, Sivanandam V. Natarajan, Cecilia Persson, Roberta Pierattelli, Miquel Pons, Jesus Raya, Christina Redfield, Vilko Smrečki, Georgios A. Spyroulias, Julien Trébosc, Alicia Vallet, Carine van Heijenoort, Hugo van Ingen, Thomas Vosegaard, Julia Wirmer-Bartoschek, Harald Schwalbe, Anne Lesage, Guido Pintacuda","doi":"10.1016/j.pnmrs.2026.101595","DOIUrl":"https://doi.org/10.1016/j.pnmrs.2026.101595","url":null,"abstract":"","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"38 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146014437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Band-selective excitation short transient 1H PGSE NMR 带选择性激励短瞬态1H PGSE核磁共振
IF 6.1 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-01-17 DOI: 10.1016/j.pnmrs.2026.101596
Shenggen Yao, David W. Keizer, William S. Price
{"title":"Band-selective excitation short transient 1H PGSE NMR","authors":"Shenggen Yao, David W. Keizer, William S. Price","doi":"10.1016/j.pnmrs.2026.101596","DOIUrl":"https://doi.org/10.1016/j.pnmrs.2026.101596","url":null,"abstract":"","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"63 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145995381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNP-enhanced NMR of half-integer quadrupolar nuclei in solids 固体中半整数四极核的np增强核磁共振
IF 8.2 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-28 DOI: 10.1016/j.pnmrs.2025.101585
Hiroki Nagashima , Julien Trébosc , Olivier Lafon , Jean-Paul Amoureux
Quadrupolar nuclei with half-integer spin, which represent 66 % of the NMR-active isotopes, are present in a wide range of materials with applications in various fields, including heterogeneous catalysis, optoelectronics and energy. The solid-state NMR spectra of these isotopes are affected by quadrupolar interactions, which provide unique information on the local environment of these nuclei, in addition to their chemical shifts. These anisotropic interactions, which are generally larger than other internal spin interactions, split and broaden the NMR transitions, which reduce the sensitivity for the detection of these isotopes. In addition, the large dimensions of their density matrices and the numerous NMR transitions complicate the spin dynamics and can reduce the efficiency of coherence transfers, such as cross-polarization under magic-angle spinning (CPMAS), which is widely employed to boost the sensitivity for the detection of spin-1/2 isotopes. In the last decade, sensitivity gains provided by dynamic nuclear polarization (DNP) have been exploited to detect half-integer quadrupolar nuclei in solids. This review discusses the advantages and limitations of the different DNP-NMR techniques that have been proposed for the detection of these isotopes, including direct excitation and CPMAS, and two more recently introduced methods called PRESTO (Phase-shifted Recoupling Effects by Smooth Transfer of Order) and D-RINEPT (Dipolar-mediated Refocusing Insensitive Nuclei Enhanced by Polarization Transfer). We also show how these techniques can be applied to obtain new insights on the structure of materials, notably of their surfaces, and hence, contribute to extend the range of applications of the surface-enhanced NMR spectroscopy (DNP-SENS).
具有半整数自旋的四极核占核磁共振活性同位素的66%,广泛存在于各种材料中,应用于各种领域,包括多相催化、光电子和能源。这些同位素的固态核磁共振谱受四极性相互作用的影响,除了它们的化学位移外,还提供了这些原子核局部环境的独特信息。这些各向异性相互作用通常比其他内部自旋相互作用更大,它们分裂并扩大了核磁共振跃迁,从而降低了探测这些同位素的灵敏度。此外,它们的密度矩阵的大尺寸和大量的核磁共振转变使自旋动力学复杂化,并降低了相干转移的效率,例如在魔角自旋下的交叉极化(CPMAS),这被广泛用于提高自旋1/2同位素检测的灵敏度。在过去的十年中,动态核极化(DNP)提供的灵敏度增益已被用于探测固体中的半整数四极核。本文讨论了用于检测这些同位素的不同DNP-NMR技术的优点和局限性,包括直接激发和CPMAS,以及最近引入的两种方法,称为PRESTO(通过顺序的平滑转移相移重耦合效应)和D-RINEPT(极化转移增强的偶极介导重聚焦不敏感核)。我们还展示了如何应用这些技术来获得关于材料结构的新见解,特别是它们的表面,因此,有助于扩展表面增强核磁共振波谱(DNP-SENS)的应用范围。
{"title":"DNP-enhanced NMR of half-integer quadrupolar nuclei in solids","authors":"Hiroki Nagashima ,&nbsp;Julien Trébosc ,&nbsp;Olivier Lafon ,&nbsp;Jean-Paul Amoureux","doi":"10.1016/j.pnmrs.2025.101585","DOIUrl":"10.1016/j.pnmrs.2025.101585","url":null,"abstract":"<div><div>Quadrupolar nuclei with half-integer spin, which represent 66 % of the NMR-active isotopes, are present in a wide range of materials with applications in various fields, including heterogeneous catalysis, optoelectronics and energy. The solid-state NMR spectra of these isotopes are affected by quadrupolar interactions, which provide unique information on the local environment of these nuclei, in addition to their chemical shifts. These anisotropic interactions, which are generally larger than other internal spin interactions, split and broaden the NMR transitions, which reduce the sensitivity for the detection of these isotopes. In addition, the large dimensions of their density matrices and the numerous NMR transitions complicate the spin dynamics and can reduce the efficiency of coherence transfers, such as cross-polarization under magic-angle spinning (CPMAS), which is widely employed to boost the sensitivity for the detection of spin-1/2 isotopes. In the last decade, sensitivity gains provided by dynamic nuclear polarization (DNP) have been exploited to detect half-integer quadrupolar nuclei in solids. This review discusses the advantages and limitations of the different DNP-NMR techniques that have been proposed for the detection of these isotopes, including direct excitation and CPMAS, and two more recently introduced methods called PRESTO (Phase-shifted Recoupling Effects by Smooth Transfer of Order) and <em>D</em>-RINEPT (Dipolar-mediated Refocusing Insensitive Nuclei Enhanced by Polarization Transfer). We also show how these techniques can be applied to obtain new insights on the structure of materials, notably of their surfaces, and hence, contribute to extend the range of applications of the surface-enhanced NMR spectroscopy (DNP-SENS).</div></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"152 ","pages":"Article 101585"},"PeriodicalIF":8.2,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145614098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing spin coherence times in solid-state NMR using tailored heteronuclear spin decoupling 利用定制的异核自旋去耦增强固体核磁共振自旋相干时间
IF 8.2 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-25 DOI: 10.1016/j.pnmrs.2025.101586
Zeba Qadri , Kaustubh R. Mote , Perunthiruthy K. Madhu , Asif Equbal
<div><div>The successful application of solid-state nuclear magnetic resonance (ssNMR) spectroscopy to structural studies of biological macromolecules requires high spectral resolution. In the presence of abundant <span><math><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup></math></span>H spins, the spectral resolution in <span><math><msup><mrow></mrow><mrow><mn>13</mn></mrow></msup></math></span>C or <span><math><msup><mrow></mrow><mrow><mn>15</mn></mrow></msup></math></span>N chemical-shift encoding experiments depends critically on efficient heteronuclear spin decoupling at a given magnetic field and spinning frequency. Heteronuclear line widths are primarily influenced by heterogeneous broadening, exhibiting minimal dependence on field strength and MAS frequency (<span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>), provided optimal heteronuclear decoupling is applied. Decoupling schemes aim to minimize the effects of heteronuclear dipole–dipole coupling between <span><math><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup></math></span>H and other observed spins. Initial decoupling approaches included, continuous-wave (CW) decoupling schemes proposed by Bloom and Shoolery in 1955, and followed by various methods in the 1990’s, including two-pulse phase-modulated (TPPM) and X-inverse-X (XiX) decoupling. Nevertheless, these schemes demonstrate limited tolerance to deviations from optimal parameters and their optimization with biomolecular samples is often time-intensive or even practically unattainable. More recent advancements include non-rotor-synchronized refocused continuous-wave (<span><math><mi>r</mi></math></span>CW) decoupling methods, which offer significant improvements over other methods. The robustness of <span><math><mi>r</mi></math></span>CW decoupling to variations in radio-frequency (RF) field amplitude (nutation frequency), offset, and MAS frequency is crucial for high-resolution spectra from insensitive samples. A phase-alternated refocused continuous-wave decoupling method (<span><math><mi>r</mi></math></span>CW<span><math><msup><mrow></mrow><mrow><mi>A</mi><mi>p</mi><mi>A</mi></mrow></msup></math></span>) provides even better resolution, simplicity in setup, and robustness. This improvement is largely due to more effective cancellation of residual heteronuclear, <span><math><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup></math></span>H<span><math><mo>−</mo></math></span> <span><math><msup><mrow></mrow><mrow><mn>13</mn></mrow></msup></math></span>C, dipole–dipole coupling interactions which are influenced by homonuclear, <span><math><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup></math></span>H<span><math><mo>−</mo></math></span> <span><math><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup></math></span>H, dipole–dipole couplings under RF irradiation. This review highlights key decoupling methods, with a focus on <span><math><mi>r</mi></math></span>CW and its variants. It presents experi
固体核磁共振(ssNMR)光谱技术在生物大分子结构研究中的成功应用需要高光谱分辨率。在丰富的1H自旋存在的情况下,13C或15N化学位移编码实验的光谱分辨率主要取决于在给定磁场和自旋频率下的有效异核自旋去耦。异质谱线宽主要受异质谱宽的影响,在最佳异核去耦条件下,对场强和MAS频率(νr)的依赖最小。解耦方案旨在最小化异核偶极子-偶极子耦合在1H和其他观察到的自旋之间的影响。最初的解耦方法包括Bloom和Shoolery在1955年提出的连续波(CW)解耦方案,随后在20世纪90年代出现了各种方法,包括双脉冲相位调制(TPPM)和x逆x (XiX)解耦。然而,这些方案对偏离最佳参数的容忍度有限,而且它们对生物分子样品的优化通常是耗时的,甚至实际上是无法实现的。最近的进展包括非转子同步重聚焦连续波(rCW)解耦方法,它比其他方法有了显著的改进。rCW解耦对射频(RF)场振幅(张动频率)、偏置和MAS频率变化的鲁棒性对于来自不敏感样品的高分辨率光谱至关重要。交替相位重聚焦连续波解耦方法(rCWApA)提供了更好的分辨率、简单的设置和鲁棒性。这种改善很大程度上是由于射频辐射下受同核1H−1H偶极-偶极耦合影响的残余异核1H−13C偶极-偶极耦合相互作用更有效地抵消。这篇综述强调了关键的解耦方法,重点是rCW及其变体。实验和数值结果证明了rCW方法的优越效率,并为指导解耦策略的设计提供了理论见解,以提高灵敏度和分辨率,在8 kHz至100 kHz的MAS频率范围内进行最小优化和易于实现。
{"title":"Enhancing spin coherence times in solid-state NMR using tailored heteronuclear spin decoupling","authors":"Zeba Qadri ,&nbsp;Kaustubh R. Mote ,&nbsp;Perunthiruthy K. Madhu ,&nbsp;Asif Equbal","doi":"10.1016/j.pnmrs.2025.101586","DOIUrl":"10.1016/j.pnmrs.2025.101586","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The successful application of solid-state nuclear magnetic resonance (ssNMR) spectroscopy to structural studies of biological macromolecules requires high spectral resolution. In the presence of abundant &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;H spins, the spectral resolution in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;13&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;C or &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;15&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;N chemical-shift encoding experiments depends critically on efficient heteronuclear spin decoupling at a given magnetic field and spinning frequency. Heteronuclear line widths are primarily influenced by heterogeneous broadening, exhibiting minimal dependence on field strength and MAS frequency (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;), provided optimal heteronuclear decoupling is applied. Decoupling schemes aim to minimize the effects of heteronuclear dipole–dipole coupling between &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;H and other observed spins. Initial decoupling approaches included, continuous-wave (CW) decoupling schemes proposed by Bloom and Shoolery in 1955, and followed by various methods in the 1990’s, including two-pulse phase-modulated (TPPM) and X-inverse-X (XiX) decoupling. Nevertheless, these schemes demonstrate limited tolerance to deviations from optimal parameters and their optimization with biomolecular samples is often time-intensive or even practically unattainable. More recent advancements include non-rotor-synchronized refocused continuous-wave (&lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;CW) decoupling methods, which offer significant improvements over other methods. The robustness of &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;CW decoupling to variations in radio-frequency (RF) field amplitude (nutation frequency), offset, and MAS frequency is crucial for high-resolution spectra from insensitive samples. A phase-alternated refocused continuous-wave decoupling method (&lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;CW&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;) provides even better resolution, simplicity in setup, and robustness. This improvement is largely due to more effective cancellation of residual heteronuclear, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;H&lt;span&gt;&lt;math&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;13&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;C, dipole–dipole coupling interactions which are influenced by homonuclear, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;H&lt;span&gt;&lt;math&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;H, dipole–dipole couplings under RF irradiation. This review highlights key decoupling methods, with a focus on &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;CW and its variants. It presents experi","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"152 ","pages":"Article 101586"},"PeriodicalIF":8.2,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145592958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dr. James Feeney (1936–2025) 詹姆斯·菲尼博士(1936-2025)
IF 8.2 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-01 DOI: 10.1016/j.pnmrs.2025.101584
{"title":"Dr. James Feeney (1936–2025)","authors":"","doi":"10.1016/j.pnmrs.2025.101584","DOIUrl":"10.1016/j.pnmrs.2025.101584","url":null,"abstract":"","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"150 ","pages":"Article 101584"},"PeriodicalIF":8.2,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145619652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure and orientational order of molecules in nematic liquid crystal phases 向列相液晶中分子的结构和取向顺序
IF 8.2 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-12 DOI: 10.1016/j.pnmrs.2025.101576
J.W. Emsley
The molecules in nematic liquid crystal phases move rapidly but not randomly producing partial molecular orientation described by sets of order parameters. The molecules of pure liquid crystals are flexible by virtue of bond rotational motion, which has a profound effect on the properties of the liquid crystal phase. NMR spectroscopy can study these phenomena by 1H, 2H and 13C resonances in the nematic and paranematic phases.
向列相液晶中的分子运动迅速,但不是随机的,产生由一组有序参数描述的部分分子取向。纯液晶分子由于键的旋转运动而具有柔性,这对液晶相的性质有深远的影响。核磁共振波谱可以通过向列相和副相的1H、2H和13C共振来研究这些现象。
{"title":"The structure and orientational order of molecules in nematic liquid crystal phases","authors":"J.W. Emsley","doi":"10.1016/j.pnmrs.2025.101576","DOIUrl":"10.1016/j.pnmrs.2025.101576","url":null,"abstract":"<div><div>The molecules in nematic liquid crystal phases move rapidly but not randomly producing partial molecular orientation described by sets of order parameters. The molecules of pure liquid crystals are flexible by virtue of bond rotational motion, which has a profound effect on the properties of the liquid crystal phase. NMR spectroscopy can study these phenomena by <sup>1</sup>H, <sup>2</sup>H and <sup>13</sup>C resonances in the nematic and paranematic phases.</div></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"150 ","pages":"Article 101576"},"PeriodicalIF":8.2,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144621885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR insights on multidomain proteins: the case of the SARS-CoV-2 nucleoprotein 多结构域蛋白的核磁共振洞察:以SARS-CoV-2核蛋白为例
IF 8.2 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-07 DOI: 10.1016/j.pnmrs.2025.101577
Tessa Bolognesi, Marco Schiavina, Isabella C. Felli, Roberta Pierattelli
Studying multidomain proteins, especially those combining well-folded domains with intrinsically disordered regions (IDRs), requires specific Nuclear Magnetic Resonance (NMR) techniques to address their structural complexity. To illustrate this, we focus here on the nucleocapsid protein from SARS-CoV-2, which includes both structured and disordered regions. We applied a suite of NMR methods, combining ARTINA software for automatic assignment and structure modelling with multi-receiver experiments that simultaneously capture signals from different nuclear spins, increasing both data quality and acquisition efficiency. Studies of signal temperature-dependence, heteronuclear relaxation and secondary structure propensity (SSP) analysis, as well as experiments employing either 1H or 13C detection to achieve simultaneous snapshots of globular and disordered regions, were used to analyse both the isolated N-terminal domain (NTD) and a construct (NTR) comprising the NTD and two flanking highly disordered regions (IDR1, IDR2). This comprehensive approach allowed us to characterize the NTD's structure and to evaluate how the IDRs affect the overall conformation and dynamics, as well as the interaction with RNA. The findings underscore the importance of applying such a combination of tailored NMR techniques for effectively studying multidomain proteins with heterogeneous structural and dynamic properties.
研究多结构域蛋白质,特别是那些结合良好折叠结构域和内在无序区(IDRs)的蛋白质,需要特定的核磁共振(NMR)技术来解决其结构复杂性。为了说明这一点,我们将重点放在SARS-CoV 2的核衣壳蛋白上,它包括结构区和无序区。我们应用了一套核磁共振方法,结合ARTINA软件进行自动分配和结构建模,以及多接收器实验,同时捕获来自不同核自旋的信号,提高了数据质量和采集效率。研究人员利用信号温度依赖性、异核弛豫和二级结构倾向(SSP)分析,以及利用1H或13C检测实现球状区和无序区同时快照的实验,分析了孤立的n端结构域(NTD)和由NTD和两个侧高无序区(IDR1, IDR2)组成的结构体(NTR)。这种综合方法使我们能够表征NTD的结构,并评估idr如何影响整体构象和动力学,以及与RNA的相互作用。这些发现强调了应用这种定制核磁共振技术的组合来有效研究具有异质结构和动态特性的多结构域蛋白质的重要性。
{"title":"NMR insights on multidomain proteins: the case of the SARS-CoV-2 nucleoprotein","authors":"Tessa Bolognesi,&nbsp;Marco Schiavina,&nbsp;Isabella C. Felli,&nbsp;Roberta Pierattelli","doi":"10.1016/j.pnmrs.2025.101577","DOIUrl":"10.1016/j.pnmrs.2025.101577","url":null,"abstract":"<div><div>Studying multidomain proteins, especially those combining well-folded domains with intrinsically disordered regions (IDRs), requires specific Nuclear Magnetic Resonance (NMR) techniques to address their structural complexity. To illustrate this, we focus here on the nucleocapsid protein from SARS-CoV-2, which includes both structured and disordered regions. We applied a suite of NMR methods, combining ARTINA software for automatic assignment and structure modelling with multi-receiver experiments that simultaneously capture signals from different nuclear spins, increasing both data quality and acquisition efficiency. Studies of signal temperature-dependence, heteronuclear relaxation and secondary structure propensity (SSP) analysis, as well as experiments employing either <sup>1</sup>H or <sup>13</sup>C detection to achieve simultaneous snapshots of globular and disordered regions, were used to analyse both the isolated N-terminal domain (NTD) and a construct (NTR) comprising the NTD and two flanking highly disordered regions (IDR1, IDR2). This comprehensive approach allowed us to characterize the NTD's structure and to evaluate how the IDRs affect the overall conformation and dynamics, as well as the interaction with RNA. The findings underscore the importance of applying such a combination of tailored NMR techniques for effectively studying multidomain proteins with heterogeneous structural and dynamic properties.</div></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"148 ","pages":"Article 101577"},"PeriodicalIF":8.2,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144621918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning in NMR spectroscopy 核磁共振波谱中的机器学习
IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-01 DOI: 10.1016/j.pnmrs.2025.101575
Piotr Klukowski , Roland Riek , Peter Güntert
NMR spectroscopy is a versatile technique for studies of molecular structures, dynamic processes, and intermolecular interactions across a broad range of systems, including small molecules, macromolecules, biomolecular assemblies, and materials in both solution and solid-state environments. As the complexity of NMR studies continues to pose challenges for practitioners, the integration of machine learning is recognized as a promising research direction for improving data acquisition, processing, and analysis. Here, we summarize recent findings in this area, highlighting common applications such as signal detection, chemical shift assignment, structure determination, chemical shift prediction, non-uniform sampling reconstruction, and denoising. For each of these applications, we discuss machine learning methods, design choices, and key publicly available data repositories. We conclude by identifying major trends and emerging directions at the intersection of machine learning and NMR spectroscopy that could help advance research in the field.
核磁共振波谱是一种通用的技术,用于研究分子结构、动态过程和分子间相互作用,研究范围广泛的系统,包括小分子、大分子、生物分子组装和溶液和固态环境中的材料。随着核磁共振研究的复杂性不断给从业者带来挑战,机器学习的集成被认为是改善数据采集、处理和分析的一个有前途的研究方向。在这里,我们总结了该领域的最新研究成果,重点介绍了信号检测、化学位移分配、结构确定、化学位移预测、非均匀采样重建和去噪等常见应用。对于这些应用,我们将讨论机器学习方法、设计选择和关键的公开可用数据存储库。最后,我们确定了机器学习和核磁共振波谱交叉的主要趋势和新兴方向,这有助于推进该领域的研究。
{"title":"Machine learning in NMR spectroscopy","authors":"Piotr Klukowski ,&nbsp;Roland Riek ,&nbsp;Peter Güntert","doi":"10.1016/j.pnmrs.2025.101575","DOIUrl":"10.1016/j.pnmrs.2025.101575","url":null,"abstract":"<div><div>NMR spectroscopy is a versatile technique for studies of molecular structures, dynamic processes, and intermolecular interactions across a broad range of systems, including small molecules, macromolecules, biomolecular assemblies, and materials in both solution and solid-state environments. As the complexity of NMR studies continues to pose challenges for practitioners, the integration of machine learning is recognized as a promising research direction for improving data acquisition, processing, and analysis. Here, we summarize recent findings in this area, highlighting common applications such as signal detection, chemical shift assignment, structure determination, chemical shift prediction, non-uniform sampling reconstruction, and denoising. For each of these applications, we discuss machine learning methods, design choices, and key publicly available data repositories. We conclude by identifying major trends and emerging directions at the intersection of machine learning and NMR spectroscopy that could help advance research in the field.</div></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"148 ","pages":"Article 101575"},"PeriodicalIF":7.3,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144565899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Nuclear Magnetic Resonance Spectroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1