Estimation of general time-varying single particle tracking linear models using local likelihood.

Boris I Godoy, Nicholas A Vickers, Y Lin, Sean B Andersson
{"title":"Estimation of general time-varying single particle tracking linear models using local likelihood.","authors":"Boris I Godoy,&nbsp;Nicholas A Vickers,&nbsp;Y Lin,&nbsp;Sean B Andersson","doi":"10.23919/ecc51009.2020.9143818","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we study a general approach to the estimation of single particle tracking models with time-varying parameters. The main idea is to use local Maximum Likelihood (ML), applying a sliding window over the data and estimating the model parameters in each window. We combine local ML with Expectation Maximization to iteratively find the ML estimate in each window, an approach that is amenable to generalization to nonlinear models. Results using controlled-experimental data generated in our lab show that our proposed algorithm is able to track changes in the parameters as they evolve during a trajectory under real-world experimental conditions, outperforming other algorithms of similar nature.</p>","PeriodicalId":72704,"journal":{"name":"Control Conference (ECC) ... European. European Control Conference","volume":"2020 ","pages":"527-533"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411989/pdf/nihms-1611711.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Conference (ECC) ... European. European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc51009.2020.9143818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we study a general approach to the estimation of single particle tracking models with time-varying parameters. The main idea is to use local Maximum Likelihood (ML), applying a sliding window over the data and estimating the model parameters in each window. We combine local ML with Expectation Maximization to iteratively find the ML estimate in each window, an approach that is amenable to generalization to nonlinear models. Results using controlled-experimental data generated in our lab show that our proposed algorithm is able to track changes in the parameters as they evolve during a trajectory under real-world experimental conditions, outperforming other algorithms of similar nature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一般时变单粒子跟踪线性模型的局部似然估计。
在这项工作中,我们研究了一种估计具有时变参数的单粒子跟踪模型的通用方法。主要思想是使用局部最大似然(ML),在数据上应用滑动窗口,并估计每个窗口中的模型参数。我们将局部ML与期望最大化相结合,在每个窗口中迭代地找到ML估计,这种方法适用于非线性模型的推广。使用我们实验室生成的受控实验数据的结果表明,我们提出的算法能够在真实世界的实验条件下跟踪参数在轨迹中的变化,优于其他类似性质的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Acceleration of Gradient-Based Empirical Risk Minimization using Local Polynomial Regression. Model-Based Estimation of Wheel Slip in Locomotives Computationally efficient application of Sequential Monte Carlo expectation maximization to confined single particle tracking. Estimation of general time-varying single particle tracking linear models using local likelihood. Subsystem of decision making support of robotics hardware-software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1