Bacterial transcription during growth arrest.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Transcription-Austin Pub Date : 2021-08-01 Epub Date: 2021-09-06 DOI:10.1080/21541264.2021.1968761
Megan Bergkessel
{"title":"Bacterial transcription during growth arrest.","authors":"Megan Bergkessel","doi":"10.1080/21541264.2021.1968761","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria in most natural environments spend substantial periods of time limited for essential nutrients and not actively dividing. While transcriptional activity under these conditions is substantially reduced compared to that occurring during active growth, observations from diverse organisms and experimental approaches have shown that new transcription still occurs and is important for survival. Much of our understanding of transcription regulation has come from measuring transcripts in exponentially growing cells, or from <i>in vitro</i> experiments focused on transcription from highly active promoters by the housekeeping RNA polymerase holoenzyme. The fact that transcription during growth arrest occurs at low levels and is highly heterogeneous has posed challenges for its study. However, new methods of measuring low levels of gene expression activity, even in single cells, offer exciting opportunities for directly investigating transcriptional activity and its regulation during growth arrest. Furthermore, much of the rich structural and biochemical data from decades of work on the bacterial transcriptional machinery is also relevant to growth arrest. In this review, the physiological changes likely affecting transcription during growth arrest are first considered. Next, possible adaptations to help facilitate ongoing transcription during growth arrest are discussed. Finally, new insights from several recently published datasets investigating mRNA transcripts in single bacterial cells at various growth phases will be explored. Keywords: Growth arrest, stationary phase, RNA polymerase, nucleoid condensation, population heterogeneity.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"12 4","pages":"232-249"},"PeriodicalIF":3.6000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcription-Austin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541264.2021.1968761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria in most natural environments spend substantial periods of time limited for essential nutrients and not actively dividing. While transcriptional activity under these conditions is substantially reduced compared to that occurring during active growth, observations from diverse organisms and experimental approaches have shown that new transcription still occurs and is important for survival. Much of our understanding of transcription regulation has come from measuring transcripts in exponentially growing cells, or from in vitro experiments focused on transcription from highly active promoters by the housekeeping RNA polymerase holoenzyme. The fact that transcription during growth arrest occurs at low levels and is highly heterogeneous has posed challenges for its study. However, new methods of measuring low levels of gene expression activity, even in single cells, offer exciting opportunities for directly investigating transcriptional activity and its regulation during growth arrest. Furthermore, much of the rich structural and biochemical data from decades of work on the bacterial transcriptional machinery is also relevant to growth arrest. In this review, the physiological changes likely affecting transcription during growth arrest are first considered. Next, possible adaptations to help facilitate ongoing transcription during growth arrest are discussed. Finally, new insights from several recently published datasets investigating mRNA transcripts in single bacterial cells at various growth phases will be explored. Keywords: Growth arrest, stationary phase, RNA polymerase, nucleoid condensation, population heterogeneity.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生长停滞期间的细菌转录
大多数自然环境中的细菌都有相当长的一段时间无法获得必需的营养物质,也无法进行积极的分裂。虽然与活跃生长期间相比,这些条件下的转录活动大大减少,但从不同生物体和实验方法中观察到的结果表明,新的转录仍在发生,而且对生存非常重要。我们对转录调控的理解大多来自于对指数生长细胞中转录本的测量,或来自于体外实验,这些实验的重点是通过RNA聚合酶全酶从高度活跃的启动子进行转录。生长停滞期间的转录水平很低,而且具有高度异质性,这给研究带来了挑战。然而,测量低水平基因表达活性(甚至在单细胞中)的新方法为直接研究生长停滞期间的转录活性及其调控提供了令人兴奋的机会。此外,几十年来研究细菌转录机制所获得的大量结构和生化数据也与生长停滞有关。本综述首先探讨了生长停滞期间可能影响转录的生理变化。接着,讨论了在生长停滞期间促进转录的可能适应性。最后,将探讨最近发表的几个研究不同生长阶段单个细菌细胞中 mRNA 转录本的数据集的新见解。关键词生长停滞 静止期 RNA聚合酶 核团凝聚 群体异质性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transcription-Austin
Transcription-Austin BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
6.50
自引率
5.60%
发文量
9
期刊最新文献
Hypoxia-inducing transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. From silence to symphony: transcriptional repression and recovery in response to DNA damage. Structure and function of bacterial transcription regulators of the SorC family. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Negative feedback systems for modelling NF-κB transcription factor oscillatory activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1