Effect of an ionic antineoplastic agent Cytoreg on blood chemistry in a Wistar rat model.

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Medical Gas Research Pub Date : 2022-01-01 DOI:10.4103/2045-9912.324592
Katiusca Villasana, William Quintero, Yepsys Montero, Cristian Pino, Oscar Uzcategui, Geizon Torres, Mariangel Prada, Lewis Pozo, William Bauta, William Jimenez
{"title":"Effect of an ionic antineoplastic agent Cytoreg on blood chemistry in a Wistar rat model.","authors":"Katiusca Villasana,&nbsp;William Quintero,&nbsp;Yepsys Montero,&nbsp;Cristian Pino,&nbsp;Oscar Uzcategui,&nbsp;Geizon Torres,&nbsp;Mariangel Prada,&nbsp;Lewis Pozo,&nbsp;William Bauta,&nbsp;William Jimenez","doi":"10.4103/2045-9912.324592","DOIUrl":null,"url":null,"abstract":"<p><p>Cytoreg is an ionic therapeutic agent comprising a mixture of hydrochloric, sulfuric, phosphoric, hydrofluoric, oxalic, and citric acids. In diluted form, it has demonstrated efficacy against human cancers in vitro and in vivo. Although Cytoreg is well tolerated in mice, rats, rabbits, and dogs by oral and intravenous administration, its mechanism of action is not documented. The acidic nature of Cytoreg could potentially disrupt the pH and levels of ions and dissolved gases in the blood. Here, we report the effects of the intravenous administration of Cytoreg on the arterial pH, oxygen and carbon dioxide pressures, and bicarbonate, sodium, potassium, and chloride concentrations. Our results demonstrate that Cytoreg does not disturb the normal blood pH, ion levels, or carbon dioxide content, but increases oxygen levels in rats. These data are consistent with the excellent tolerability of intravenous Cytoreg observed in rabbits, and dogs. The study was approved by the Bioethics Committee of the University of the Andes, Venezuela (CEBIOULA) (approval No. 125) on November 3, 2019.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"12 1","pages":"18-23"},"PeriodicalIF":3.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/51/MGR-12-18.PMC8447950.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.324592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cytoreg is an ionic therapeutic agent comprising a mixture of hydrochloric, sulfuric, phosphoric, hydrofluoric, oxalic, and citric acids. In diluted form, it has demonstrated efficacy against human cancers in vitro and in vivo. Although Cytoreg is well tolerated in mice, rats, rabbits, and dogs by oral and intravenous administration, its mechanism of action is not documented. The acidic nature of Cytoreg could potentially disrupt the pH and levels of ions and dissolved gases in the blood. Here, we report the effects of the intravenous administration of Cytoreg on the arterial pH, oxygen and carbon dioxide pressures, and bicarbonate, sodium, potassium, and chloride concentrations. Our results demonstrate that Cytoreg does not disturb the normal blood pH, ion levels, or carbon dioxide content, but increases oxygen levels in rats. These data are consistent with the excellent tolerability of intravenous Cytoreg observed in rabbits, and dogs. The study was approved by the Bioethics Committee of the University of the Andes, Venezuela (CEBIOULA) (approval No. 125) on November 3, 2019.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子抗肿瘤剂Cytoreg对Wistar大鼠模型血液化学的影响。
Cytoreg是一种离子治疗剂,包括盐酸、硫酸、磷酸、氢氟酸、草酸和柠檬酸的混合物。在体内和体外稀释后,它已被证明对人类癌症有效。尽管口服和静脉给药对小鼠、大鼠、家兔和狗有良好的耐受性,但其作用机制尚未有文献记载。Cytoreg的酸性可能会潜在地破坏血液中的pH值和离子水平以及溶解气体。在这里,我们报告了静脉给药Cytoreg对动脉pH值、氧和二氧化碳压力以及碳酸氢盐、钠、钾和氯化物浓度的影响。我们的研究结果表明,Cytoreg不会干扰正常的血液pH值、离子水平或二氧化碳含量,但会增加大鼠的氧气水平。这些数据与在兔和狗身上观察到的静脉注射Cytoreg的良好耐受性一致。该研究于2019年11月3日获得了委内瑞拉安第斯大学(CEBIOULA)生物伦理委员会(批准号125)的批准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1