[Review Norovirus].

Uirusu Pub Date : 2020-01-01 DOI:10.2222/jsv.70.117
Kazuhiko Katayama
{"title":"[Review Norovirus].","authors":"Kazuhiko Katayama","doi":"10.2222/jsv.70.117","DOIUrl":null,"url":null,"abstract":"<p><p>Noroviruses commonly cause infectious gastroenteritis and massive food poisoning. There is an urgent need to elucidate the infection mechanism of noroviruses and to develop vaccines and therapeutic drugs. In addition to human disease, noroviruses have been implicated in animal disease. Noroviruses that cause murine diseases can be propagated in strained cultured cells, and for many years, murine norovirus has been used as a model for human noroviruses that could not be propagated in cultured cells. That model and advances in technology have been instrumental in basic studies of noroviruses. From structural biology, noroviruses undergo dynamic shape changes to improve their infectivity when they infect cells. New culture techniques have made human intestinal organoids available for studying the mechanisms of pathogenic expression of human noroviruses in the intestinal tract, mechanisms of infection growth, and the search for receptor molecules. Vaccines and antivirals using human intestinal organoids are under active development, and some are already in clinical trials. In this paper, I review the latest research results, vaccine development, and other advances from the history of norovirus discovery.</p>","PeriodicalId":75275,"journal":{"name":"Uirusu","volume":"70 2","pages":"117-128"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uirusu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2222/jsv.70.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Noroviruses commonly cause infectious gastroenteritis and massive food poisoning. There is an urgent need to elucidate the infection mechanism of noroviruses and to develop vaccines and therapeutic drugs. In addition to human disease, noroviruses have been implicated in animal disease. Noroviruses that cause murine diseases can be propagated in strained cultured cells, and for many years, murine norovirus has been used as a model for human noroviruses that could not be propagated in cultured cells. That model and advances in technology have been instrumental in basic studies of noroviruses. From structural biology, noroviruses undergo dynamic shape changes to improve their infectivity when they infect cells. New culture techniques have made human intestinal organoids available for studying the mechanisms of pathogenic expression of human noroviruses in the intestinal tract, mechanisms of infection growth, and the search for receptor molecules. Vaccines and antivirals using human intestinal organoids are under active development, and some are already in clinical trials. In this paper, I review the latest research results, vaccine development, and other advances from the history of norovirus discovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(审查诺瓦克病毒)。
诺如病毒通常引起感染性胃肠炎和大量食物中毒。迫切需要阐明诺如病毒的感染机制,开发疫苗和治疗药物。除人类疾病外,诺如病毒还与动物疾病有关。引起小鼠疾病的诺如病毒可以在培养细胞中繁殖,多年来,小鼠诺如病毒一直被用作不能在培养细胞中繁殖的人类诺如病毒的模型。该模型和技术进步有助于诺如病毒的基础研究。从结构生物学来看,诺如病毒在感染细胞时经历动态形状变化以提高其传染性。新的培养技术使人类肠道类器官可用于研究人类诺如病毒在肠道中的致病表达机制、感染生长机制和寻找受体分子。利用人类肠道类器官的疫苗和抗病毒药物正在积极开发中,有些已经进入临床试验阶段。在本文中,我回顾了诺如病毒发现史上的最新研究成果、疫苗开发和其他进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Endogenous viral emelement limit cognate virus replication in mosquito vectors]. [Neutralization of hepatitis B virus with vaccine-escape mutations by novel hepatitis B vaccine with large-HBs antigen].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1