Machine Learning Applications in the Diagnosis of Benign and Malignant Hematological Diseases.

Clinical Hematology International Pub Date : 2020-12-21 eCollection Date: 2021-03-01 DOI:10.2991/chi.k.201130.001
Ibrahim N Muhsen, David Shyr, Anthony D Sung, Shahrukh K Hashmi
{"title":"Machine Learning Applications in the Diagnosis of Benign and Malignant Hematological Diseases.","authors":"Ibrahim N Muhsen,&nbsp;David Shyr,&nbsp;Anthony D Sung,&nbsp;Shahrukh K Hashmi","doi":"10.2991/chi.k.201130.001","DOIUrl":null,"url":null,"abstract":"<p><p>The use of machine learning (ML) and deep learning (DL) methods in hematology includes diagnostic, prognostic, and therapeutic applications. This increase is due to the improved access to ML and DL tools and the expansion of medical data. The utilization of ML remains limited in clinical practice, with some disciplines further along in their adoption, such as radiology and histopathology. In this review, we discuss the current uses of ML in diagnosis in the field of hematology, including image-recognition, laboratory, and genomics-based diagnosis. Additionally, we provide an introduction to the fields of ML and DL, highlighting current trends, limitations, and possible areas of improvement.</p>","PeriodicalId":10368,"journal":{"name":"Clinical Hematology International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2a/30/CHI-3-1-13.PMC8432325.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Hematology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/chi.k.201130.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The use of machine learning (ML) and deep learning (DL) methods in hematology includes diagnostic, prognostic, and therapeutic applications. This increase is due to the improved access to ML and DL tools and the expansion of medical data. The utilization of ML remains limited in clinical practice, with some disciplines further along in their adoption, such as radiology and histopathology. In this review, we discuss the current uses of ML in diagnosis in the field of hematology, including image-recognition, laboratory, and genomics-based diagnosis. Additionally, we provide an introduction to the fields of ML and DL, highlighting current trends, limitations, and possible areas of improvement.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在良恶性血液病诊断中的应用。
机器学习(ML)和深度学习(DL)方法在血液学中的应用包括诊断、预后和治疗应用。这一增长是由于对ML和DL工具的访问改进以及医疗数据的扩展。ML在临床实践中的应用仍然有限,一些学科在其采用方面进一步发展,如放射学和组织病理学。在这篇综述中,我们讨论了目前机器学习在血液学诊断领域的应用,包括图像识别、实验室和基于基因组学的诊断。此外,我们还介绍了机器学习和深度学习领域,强调了当前的趋势、局限性和可能的改进领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evolving Role of Bridging Therapy during CAR-T Therapy How I treat newly diagnosed acute lymphoblastic leukemia Elranatamab treatment in a multiple myeloma patient undergoing renal dialysis Outcomes of Autologous stem cell transplantation in patients with primary refractory Diffuse Large B-cell lymphoma who demonstrate chemosensitivity to salvage chemotherapy Outpatient CAR T-Cell Therapy as Standard of Care: Current Perspectives and Considerations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1