Mingchuan Zhou, Jiahao Wu, Ali Ebrahimi, Niravkumar Patel, Changyan He, Peter Gehlbach, Russell H Taylor, Alois Knoll, M Ali Nasseri, Iulian Iordachita
{"title":"Spotlight-based 3D Instrument Guidance for Retinal Surgery.","authors":"Mingchuan Zhou, Jiahao Wu, Ali Ebrahimi, Niravkumar Patel, Changyan He, Peter Gehlbach, Russell H Taylor, Alois Knoll, M Ali Nasseri, Iulian Iordachita","doi":"10.1109/ismr48331.2020.9312952","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal surgery is a complex activity that can be challenging for a surgeon to perform effectively and safely. Image guided robot-assisted surgery is one of the promising solutions that bring significant surgical enhancement in treatment outcome and reduce the physical limitations of human surgeons. In this paper, we demonstrate a novel method for 3D guidance of the instrument based on the projection of spotlight in the single microscope images. The spotlight projection mechanism is firstly analyzed and modeled with a projection on both a plane and a sphere surface. To test the feasibility of the proposed method, a light fiber is integrated into the instrument which is driven by the Steady-Hand Eye Robot (SHER). The spot of light is segmented and tracked on a phantom retina using the proposed algorithm. The static calibration and dynamic test results both show that the proposed method can easily archive 0.5 mm of tip-to-surface distance which is within the clinically acceptable accuracy for intraocular visual guidance.</p>","PeriodicalId":72029,"journal":{"name":"... International Symposium on Medical Robotics. International Symposium on Medical Robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ismr48331.2020.9312952","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Symposium on Medical Robotics. International Symposium on Medical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismr48331.2020.9312952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Retinal surgery is a complex activity that can be challenging for a surgeon to perform effectively and safely. Image guided robot-assisted surgery is one of the promising solutions that bring significant surgical enhancement in treatment outcome and reduce the physical limitations of human surgeons. In this paper, we demonstrate a novel method for 3D guidance of the instrument based on the projection of spotlight in the single microscope images. The spotlight projection mechanism is firstly analyzed and modeled with a projection on both a plane and a sphere surface. To test the feasibility of the proposed method, a light fiber is integrated into the instrument which is driven by the Steady-Hand Eye Robot (SHER). The spot of light is segmented and tracked on a phantom retina using the proposed algorithm. The static calibration and dynamic test results both show that the proposed method can easily archive 0.5 mm of tip-to-surface distance which is within the clinically acceptable accuracy for intraocular visual guidance.