Jan Schovanek, Michal Krupka, Lubica Cibickova, Marta Karhanova, Sunaina Reddy, Veronika Kucerova, Zdenek Frysak, David Karasek
{"title":"Adipocytokines in Graves' orbitopathy and the effect of high-dose corticosteroids.","authors":"Jan Schovanek, Michal Krupka, Lubica Cibickova, Marta Karhanova, Sunaina Reddy, Veronika Kucerova, Zdenek Frysak, David Karasek","doi":"10.1080/21623945.2021.1980258","DOIUrl":null,"url":null,"abstract":"<p><p>Graves' orbitopathy (GO) is a serious, progressive eye condition seen in patients with autoimmune thyroid disease. GO is characterized by inflammation and swelling of soft orbital tissues. Adipose tissue produces cytokine mediators called adipokines. The present study focuses on the relationship between serum levels of selected adipokines in patients with GO, comparing them with the control group, and uniquely describes the effect of high-dose systemic corticosteroids (HDSC) on their levels. For the purposes of this study, we collected blood samples before and after the treatment with HDSC from 60 GO patients and 34 control subjects and measured serum levels of adiponectin, AIF-1, A-FABP and FGF-21. Levels of adiponectin significantly differed among the three study groups (ANOVA p = 0.03). AIF-1 levels were also significantly different among the study groups (ANOVA p < 0.0001). AIF-1 was significantly associated with the presence of GO after adjusting for clinical factors (age, sex, smoking and BMI) and level of TSH (odds ratio 1.003, p < 0.01). This finding could enforce targeting macrophages in treatment strategies for GO since AIF-1 is considered as a marker of their activation.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/34/c5/KADI_10_1980258.PMC8496533.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2021.1980258","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Graves' orbitopathy (GO) is a serious, progressive eye condition seen in patients with autoimmune thyroid disease. GO is characterized by inflammation and swelling of soft orbital tissues. Adipose tissue produces cytokine mediators called adipokines. The present study focuses on the relationship between serum levels of selected adipokines in patients with GO, comparing them with the control group, and uniquely describes the effect of high-dose systemic corticosteroids (HDSC) on their levels. For the purposes of this study, we collected blood samples before and after the treatment with HDSC from 60 GO patients and 34 control subjects and measured serum levels of adiponectin, AIF-1, A-FABP and FGF-21. Levels of adiponectin significantly differed among the three study groups (ANOVA p = 0.03). AIF-1 levels were also significantly different among the study groups (ANOVA p < 0.0001). AIF-1 was significantly associated with the presence of GO after adjusting for clinical factors (age, sex, smoking and BMI) and level of TSH (odds ratio 1.003, p < 0.01). This finding could enforce targeting macrophages in treatment strategies for GO since AIF-1 is considered as a marker of their activation.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.