Runtime Analysis of Restricted Tournament Selection for Bimodal Optimisation

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Evolutionary Computation Pub Date : 2022-03-01 DOI:10.1162/evco_a_00292
Edgar Covantes Osuna;Dirk Sudholt
{"title":"Runtime Analysis of Restricted Tournament Selection for Bimodal Optimisation","authors":"Edgar Covantes Osuna;Dirk Sudholt","doi":"10.1162/evco_a_00292","DOIUrl":null,"url":null,"abstract":"Niching methods have been developed to maintain the population diversity, to investigate many peaks in parallel, and to reduce the effect of genetic drift. We present the first rigorous runtime analyses of restricted tournament selection (RTS), embedded in a (μ+1) EA, and analyse its effectiveness at finding both optima of the bimodal function TwoMax. In RTS, an offspring competes against the closest individual, with respect to some distance measure, amongst w (window size) population members (chosen uniformly at random with replacement), to encourage competition within the same niche. We prove that RTS finds both optima on TwoMax efficiently if the window size w is large enough. However, if w is too small, RTS fails to find both optima even in exponential time, with high probability. We further consider a variant of RTS selecting individuals for the tournament without replacement. It yields a more diverse tournament and is more effective at preventing one niche from taking over the other. However, this comes at the expense of a slower progress towards optima when a niche collapses to a single individual. Our theoretical results are accompanied by experimental studies that shed light on parameters not covered by the theoretical results and support a conjectured lower runtime bound.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"30 1","pages":"1-26"},"PeriodicalIF":4.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9808240/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Niching methods have been developed to maintain the population diversity, to investigate many peaks in parallel, and to reduce the effect of genetic drift. We present the first rigorous runtime analyses of restricted tournament selection (RTS), embedded in a (μ+1) EA, and analyse its effectiveness at finding both optima of the bimodal function TwoMax. In RTS, an offspring competes against the closest individual, with respect to some distance measure, amongst w (window size) population members (chosen uniformly at random with replacement), to encourage competition within the same niche. We prove that RTS finds both optima on TwoMax efficiently if the window size w is large enough. However, if w is too small, RTS fails to find both optima even in exponential time, with high probability. We further consider a variant of RTS selecting individuals for the tournament without replacement. It yields a more diverse tournament and is more effective at preventing one niche from taking over the other. However, this comes at the expense of a slower progress towards optima when a niche collapses to a single individual. Our theoretical results are accompanied by experimental studies that shed light on parameters not covered by the theoretical results and support a conjectured lower runtime bound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双模优化中限制性锦标赛选择的运行时间分析
已经开发了生态位方法来保持种群多样性,并行地研究许多峰值,并减少遗传漂移的影响。我们首次对嵌入(μ+1)EA的限制性锦标赛选择(RTS)进行了严格的运行时分析,并分析了其在寻找双峰函数TwoMax的两个最优值方面的有效性。在RTS中,后代在w(窗口大小)种群成员(随机选择并替换)之间,就某些距离测量而言,与最近的个体竞争,以鼓励同一生态位内的竞争。我们证明,如果窗口大小w足够大,RTS在TwoMax上有效地找到两个最优。然而,如果w太小,RTS即使在指数时间内也无法找到两个最优值,概率很高。我们进一步考虑RTS的一种变体,即在没有替换的情况下为锦标赛选择个人。它产生了一个更加多样化的锦标赛,并且更有效地防止一个利基市场取代另一个。然而,当一个生态位坍塌为一个个体时,这是以较慢的优化进程为代价的。我们的理论结果伴随着实验研究,这些研究揭示了理论结果未涵盖的参数,并支持推测的运行时下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
期刊最新文献
Genetic Programming-based Feature Selection for Symbolic Regression on Incomplete Data. Tail Bounds on the Runtime of Categorical Compact Genetic Algorithm. Optimizing Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms. Genetic Programming for Automatically Evolving Multiple Features to Classification. A Tri-Objective Method for Bi-Objective Feature Selection in Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1