Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis.

Q1 Agricultural and Biological Sciences Fungal Biology and Biotechnology Pub Date : 2021-10-16 DOI:10.1186/s40694-021-00117-4
Jonna Bouwknegt, Charlotte C Koster, Aurin M Vos, Raúl A Ortiz-Merino, Mats Wassink, Marijke A H Luttik, Marcel van den Broek, Peter L Hagedoorn, Jack T Pronk
{"title":"Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis.","authors":"Jonna Bouwknegt,&nbsp;Charlotte C Koster,&nbsp;Aurin M Vos,&nbsp;Raúl A Ortiz-Merino,&nbsp;Mats Wassink,&nbsp;Marijke A H Luttik,&nbsp;Marcel van den Broek,&nbsp;Peter L Hagedoorn,&nbsp;Jack T Pronk","doi":"10.1186/s40694-021-00117-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD.</p><p><strong>Results: </strong>Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9.</p><p><strong>Conclusions: </strong>Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure-function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520639/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40694-021-00117-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 7

Abstract

Background: In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD.

Results: Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9.

Conclusions: Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure-function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自三种系统发育遥远的真菌的ii类二氢乳酸菌脱氢酶支持厌氧嘧啶生物合成。
背景:在大多数真菌中,依赖醌的ii类二氢乙酸脱氢酶(DHODs)是嘧啶生物合成所必需的。这些ii类DHODHs与线粒体呼吸的耦合使得它们的体内活性依赖于氧的可用性。酿酒酵母和密切相关的酵母菌种含有胞质i类DHOD (Ura1),它使用富马酸盐作为电子受体,从而使厌氧嘧啶合成成为可能。在这里,我们研究了三种可以厌氧生长的真菌(neocallimastigomytes robustus)和酵母Schizosaccharomyces japonicus和Dekkera bruxellensis)的DHOD,但根据基因组分析,它们只有ii类DHOD。结果:能够厌氧、嘧啶原生营养生长的真菌(Arura9, SjURA9, DbURA9)的ii类dhod编码基因在酿酒酵母ura1Δ菌株中异源表达,该菌株支持好氧和厌氧嘧啶原生营养生长。表达DbURA9的菌株在不添加嘧啶的情况下表现出厌氧生长延迟。适应更快生长的表达dbura9的菌株显示编码延胡索酶的FUM1突变。gfp标记的SjUra9和DbUra9定位于酿酒酵母的线粒体,而序列缺乏线粒体靶向序列的ArUra9定位于酵母细胞质。细胞提取物实验表明,ArUra9以游离FAD和FMN为电子受体。SjURA9在酿酒酵母中的表达可导致呼吸能力和线粒体DNA的丧失。在所有三个具有厌氧活性的Ura9同源物的活性位点上都存在半胱氨酸残基(SjUra9中的C265),这对SjUra9的厌氧活性是必需的,而对ArUra9则不是。结论:真菌ii类DHODs的活性一直被认为依赖于活跃的呼吸链,而在大多数真菌中,呼吸链需要氧气的存在。通过在酿酒酵母中的异源表达实验,本研究表明,在系统发育上遥远的真菌独立进化出了ii类二氢羟酸脱氢酶,使厌氧嘧啶生物合成成为可能。需要进一步的结构-功能研究来了解ii类DHOD厌氧活性的机制基础,以及在表达日本血吸虫厌氧活性DHOD的酿酒链球菌菌株中观察到的呼吸能力丧失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Biology and Biotechnology
Fungal Biology and Biotechnology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
10.20
自引率
0.00%
发文量
17
审稿时长
9 weeks
期刊最新文献
The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. Streptomyces small laccase expressed in Aspergillus Niger as a new addition for the lignocellulose bioconversion toolbox. Border crossings and connections. Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation. NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1