Jinna Li, Kun Wang, Meichao Ji, Tingyue Zhang, Chao Yang, He Liu, Sixue Chen, Hongli Li, Haiying Li
{"title":"Cys-SH based quantitative redox proteomics of salt induced response in sugar beet monosomic addition line M14.","authors":"Jinna Li, Kun Wang, Meichao Ji, Tingyue Zhang, Chao Yang, He Liu, Sixue Chen, Hongli Li, Haiying Li","doi":"10.1186/s40529-021-00320-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Salt stress is a major abiotic stress that limits plant growth, development and productivity. Studying the molecular mechanisms of salt stress tolerance may help to enhance crop productivity. Sugar beet monosomic addition line M14 exhibits tolerance to salt stress.</p><p><strong>Results: </strong>In this work, the changes in the BvM14 proteome and redox proteome induced by salt stress were analyzed using a multiplex iodoTMTRAQ double labeling quantitative proteomics approach. A total of 80 proteins were differentially expressed under salt stress. Interestingly, A total of 48 redoxed peptides were identified for 42 potential redox-regulated proteins showed differential redox change under salt stress. A large proportion of the redox proteins were involved in photosynthesis, ROS homeostasis and other pathways. For example, ribulose bisphosphate carboxylase/oxygenase activase changed in its redox state after salt treatments. In addition, three redox proteins involved in regulation of ROS homeostasis were also changed in redox states. Transcription levels of eighteen differential proteins and redox proteins were profiled. (The proteomics data generated in this study have been submitted to the ProteomeXchange and can be accessed via username: reviewer_pxd027550@ebi.ac.uk, password: q9YNM1Pe and proteomeXchange# PXD027550.) CONCLUSIONS: The results showed involvement of protein redox modifications in BvM14 salt stress response and revealed the short-term salt responsive mechanisms. The knowledge may inform marker-based breeding effort of sugar beet and other crops for stress resilience and high yield.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523603/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40529-021-00320-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
Background: Salt stress is a major abiotic stress that limits plant growth, development and productivity. Studying the molecular mechanisms of salt stress tolerance may help to enhance crop productivity. Sugar beet monosomic addition line M14 exhibits tolerance to salt stress.
Results: In this work, the changes in the BvM14 proteome and redox proteome induced by salt stress were analyzed using a multiplex iodoTMTRAQ double labeling quantitative proteomics approach. A total of 80 proteins were differentially expressed under salt stress. Interestingly, A total of 48 redoxed peptides were identified for 42 potential redox-regulated proteins showed differential redox change under salt stress. A large proportion of the redox proteins were involved in photosynthesis, ROS homeostasis and other pathways. For example, ribulose bisphosphate carboxylase/oxygenase activase changed in its redox state after salt treatments. In addition, three redox proteins involved in regulation of ROS homeostasis were also changed in redox states. Transcription levels of eighteen differential proteins and redox proteins were profiled. (The proteomics data generated in this study have been submitted to the ProteomeXchange and can be accessed via username: reviewer_pxd027550@ebi.ac.uk, password: q9YNM1Pe and proteomeXchange# PXD027550.) CONCLUSIONS: The results showed involvement of protein redox modifications in BvM14 salt stress response and revealed the short-term salt responsive mechanisms. The knowledge may inform marker-based breeding effort of sugar beet and other crops for stress resilience and high yield.
期刊介绍:
Botanical Studies is an open access journal that encompasses all aspects of botany, including but not limited to taxonomy, morphology, development, genetics, evolution, reproduction, systematics, and biodiversity of all plant groups, algae, and fungi. The journal is affiliated with the Institute of Plant and Microbial Biology, Academia Sinica, Taiwan.