Ibrahim Azar, Samer Alkassis, Jami Fukui, Fares Alsawah, Kalub Fedak, Mohammed Najeeb Al Hallak, Ammar Sukari, Misako Nagasaka
{"title":"Spotlight on Trastuzumab Deruxtecan (DS-8201,T-DXd) for <i>HER2</i> Mutation Positive Non-Small Cell Lung Cancer.","authors":"Ibrahim Azar, Samer Alkassis, Jami Fukui, Fares Alsawah, Kalub Fedak, Mohammed Najeeb Al Hallak, Ammar Sukari, Misako Nagasaka","doi":"10.2147/LCTT.S307324","DOIUrl":null,"url":null,"abstract":"<p><p>Human epidermal growth factor receptor 2 (<i>HER2</i>) is a proto-oncogene that, when mutated or overexpressed, plays an important role in oncogenesis. The landscape of <i>HER2</i>-positive breast cancer has changed dramatically over the past 2 decades with the FDA approval of a growing number of agents (antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates) targeting the <i>HER2</i> receptor. <i>HER2</i> inhibition has also been approved for <i>HER2</i>-positive gastric cancer. <i>HER2</i> is amplified in 9% and mutated in 3% of lung cancer. Historically, <i>HER2</i>-targeted therapy for lung cancer with trastuzumab, pertuzumab, and trastuzumab emtansine has failed to demonstrate a survival benefit. Trastuzumab deruxtecan (T-DXd) is a novel antibody-drug conjugate with a tetrapeptide linker, which delivers a topoisomerase I inhibitor with a drug-to-antibody ratio of 7~8. The potency of the active payload, as well as its significant bystander effect, resulted in significant anti-tumor activity. The DESTINY-Lung01 trial evaluated T-DXd in <i>HER2</i>-positive non-squamous non-small cell lung cancer (NSCLC) and reported a progression-free survival of 14 months in <i>HER2</i>-mutated NSCLC, earning its breakthrough designation by the FDA. In this review, we will discuss the structural characteristics, pharmacodynamics, and pharmacokinetics of T-DXd. We will also shed light on the preclinical and ongoing clinical trials of T-DXd along with future directions in the management of <i>HER2</i> positive lung cancer.</p>","PeriodicalId":18066,"journal":{"name":"Lung Cancer: Targets and Therapy","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/bc/lctt-12-103.PMC8507417.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung Cancer: Targets and Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/LCTT.S307324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
Human epidermal growth factor receptor 2 (HER2) is a proto-oncogene that, when mutated or overexpressed, plays an important role in oncogenesis. The landscape of HER2-positive breast cancer has changed dramatically over the past 2 decades with the FDA approval of a growing number of agents (antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates) targeting the HER2 receptor. HER2 inhibition has also been approved for HER2-positive gastric cancer. HER2 is amplified in 9% and mutated in 3% of lung cancer. Historically, HER2-targeted therapy for lung cancer with trastuzumab, pertuzumab, and trastuzumab emtansine has failed to demonstrate a survival benefit. Trastuzumab deruxtecan (T-DXd) is a novel antibody-drug conjugate with a tetrapeptide linker, which delivers a topoisomerase I inhibitor with a drug-to-antibody ratio of 7~8. The potency of the active payload, as well as its significant bystander effect, resulted in significant anti-tumor activity. The DESTINY-Lung01 trial evaluated T-DXd in HER2-positive non-squamous non-small cell lung cancer (NSCLC) and reported a progression-free survival of 14 months in HER2-mutated NSCLC, earning its breakthrough designation by the FDA. In this review, we will discuss the structural characteristics, pharmacodynamics, and pharmacokinetics of T-DXd. We will also shed light on the preclinical and ongoing clinical trials of T-DXd along with future directions in the management of HER2 positive lung cancer.