{"title":"Speech Computations of the Human Superior Temporal Gyrus.","authors":"Ilina Bhaya-Grossman, Edward F Chang","doi":"10.1146/annurev-psych-022321-035256","DOIUrl":null,"url":null,"abstract":"<p><p>Human speech perception results from neural computations that transform external acoustic speech signals into internal representations of words. The superior temporal gyrus (STG) contains the nonprimary auditory cortex and is a critical locus for phonological processing. Here, we describe how speech sound representation in the STG relies on fundamentally nonlinear and dynamical processes, such as categorization, normalization, contextual restoration, and the extraction of temporal structure. A spatial mosaic of local cortical sites on the STG exhibits complex auditory encoding for distinct acoustic-phonetic and prosodic features. We propose that as a population ensemble, these distributed patterns of neural activity give rise to abstract, higher-order phonemic and syllabic representations that support speech perception. This review presents a multi-scale, recurrent model of phonological processing in the STG, highlighting the critical interface between auditory and language systems.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9447996/pdf/nihms-1833838.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1146/annurev-psych-022321-035256","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Human speech perception results from neural computations that transform external acoustic speech signals into internal representations of words. The superior temporal gyrus (STG) contains the nonprimary auditory cortex and is a critical locus for phonological processing. Here, we describe how speech sound representation in the STG relies on fundamentally nonlinear and dynamical processes, such as categorization, normalization, contextual restoration, and the extraction of temporal structure. A spatial mosaic of local cortical sites on the STG exhibits complex auditory encoding for distinct acoustic-phonetic and prosodic features. We propose that as a population ensemble, these distributed patterns of neural activity give rise to abstract, higher-order phonemic and syllabic representations that support speech perception. This review presents a multi-scale, recurrent model of phonological processing in the STG, highlighting the critical interface between auditory and language systems.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.