COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation.

Sankhya. Series B (2008) Pub Date : 2022-01-01 Epub Date: 2021-10-19 DOI:10.1007/s13571-021-00267-w
Siva Athreya, Giridhara R Babu, Aniruddha Iyer, Mohammed Minhaas B S, Nihesh Rathod, Sharad Shriram, Rajesh Sundaresan, Nidhin Koshy Vaidhiyan, Sarath Yasodharan
{"title":"COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation.","authors":"Siva Athreya,&nbsp;Giridhara R Babu,&nbsp;Aniruddha Iyer,&nbsp;Mohammed Minhaas B S,&nbsp;Nihesh Rathod,&nbsp;Sharad Shriram,&nbsp;Rajesh Sundaresan,&nbsp;Nidhin Koshy Vaidhiyan,&nbsp;Sarath Yasodharan","doi":"10.1007/s13571-021-00267-w","DOIUrl":null,"url":null,"abstract":"<p><p>We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of <i>C</i> rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence of optimal designs in four different contexts, including the well known c-optimal design. Usefulness of the results are illustrated via numerical examples. Our results are applicable to a wide range of epidemiological surveys under the assumptions that the estimate's Fisher-information matrix satisfies a uniform positive definite criterion.</p>","PeriodicalId":74754,"journal":{"name":"Sankhya. Series B (2008)","volume":"84 2","pages":"472-494"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524406/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sankhya. Series B (2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13571-021-00267-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of C rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence of optimal designs in four different contexts, including the well known c-optimal design. Usefulness of the results are illustrated via numerical examples. Our results are applicable to a wide range of epidemiological surveys under the assumptions that the estimate's Fisher-information matrix satisfies a uniform positive definite criterion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19:疾病负担估算血清调查的优化设计
我们提供了一种方法,通过这种方法,流行病学家可以为一项旨在估计人群疾病负担的调查得出最佳设计。对于具有给定预算C卢比的血清调查,一组具有成本、灵敏度和特异性的特定测试,我们展示了在四种不同情况下存在最佳设计,包括众所周知的C -最优设计。通过数值算例说明了所得结果的有效性。我们的结果适用于大范围的流行病学调查,假设估计的费雪信息矩阵满足统一的正定准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ratio-cum-product Type Estimators for Rare and Hidden Clustered Population. Poisson Counts, Square Root Transformation and Small Area Estimation: Square Root Transformation. COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation. Mortality Comparisons 'At a Glance': A Mortality Concentration Curve and Decomposition Analysis for India. A shared spatial model for multivariate extreme-valued binary data with non-random missingness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1