Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization Test Suites

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Evolutionary Computation Pub Date : 2022-06-01 DOI:10.1162/evco_a_00298
Dimo Brockhoff;Anne Auger;Nikolaus Hansen;Tea Tušar
{"title":"Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization Test Suites","authors":"Dimo Brockhoff;Anne Auger;Nikolaus Hansen;Tea Tušar","doi":"10.1162/evco_a_00298","DOIUrl":null,"url":null,"abstract":"Several test function suites are being used for numerical benchmarking of multiobjective optimization algorithms. While they have some desirable properties, such as well-understood Pareto sets and Pareto fronts of various shapes, most of the currently used functions possess characteristics that are arguably underrepresented in real-world problems such as separability, optima located exactly at the boundary constraints, and the existence of variables that solely control the distance between a solution and the Pareto front. Via the alternative construction of combining existing single-objective problems from the literature, we describe the bbob-biobj test suite with 55 bi-objective functions in continuous domain, and its extended version with 92 bi-objective functions (bbob-biobj-ext). Both test suites have been implemented in the COCO platform for black-box optimization benchmarking and various visualizations of the test functions are shown to reveal their properties. Besides providing details on the construction of these problems and presenting their (known) properties, this article also aims at giving the rationale behind our approach in terms of groups of functions with similar properties, objective space normalization, and problem instances. The latter allows us to easily compare the performance of deterministic and stochastic solvers, which is an often overlooked issue in benchmarking.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"30 2","pages":"165-193"},"PeriodicalIF":4.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9931088/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 22

Abstract

Several test function suites are being used for numerical benchmarking of multiobjective optimization algorithms. While they have some desirable properties, such as well-understood Pareto sets and Pareto fronts of various shapes, most of the currently used functions possess characteristics that are arguably underrepresented in real-world problems such as separability, optima located exactly at the boundary constraints, and the existence of variables that solely control the distance between a solution and the Pareto front. Via the alternative construction of combining existing single-objective problems from the literature, we describe the bbob-biobj test suite with 55 bi-objective functions in continuous domain, and its extended version with 92 bi-objective functions (bbob-biobj-ext). Both test suites have been implemented in the COCO platform for black-box optimization benchmarking and various visualizations of the test functions are shown to reveal their properties. Besides providing details on the construction of these problems and presenting their (known) properties, this article also aims at giving the rationale behind our approach in terms of groups of functions with similar properties, objective space normalization, and problem instances. The latter allows us to easily compare the performance of deterministic and stochastic solvers, which is an often overlooked issue in benchmarking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在多目标黑盒优化测试套件中使用理解良好的单目标函数
几个测试函数套件正在用于多目标优化算法的数值基准测试。虽然它们具有一些理想的性质,例如众所周知的Pareto集和各种形状的Pareto前沿,但目前使用的大多数函数都具有在现实世界问题中可以说是代表性不足的特性,例如可分性、精确位于边界约束的最优解、,以及仅控制解决方案和Pareto前沿之间距离的变量的存在。通过结合文献中现有的单目标问题的替代构造,我们描述了连续域中具有55个双目标函数的bbob-biobj测试套件,以及具有92个双目标功能的扩展版本(bbob-biobj-ext)。这两个测试套件都已在COCO平台中实现,用于黑盒优化基准测试,并显示了测试功能的各种可视化,以揭示其特性。除了提供这些问题的构造细节并展示它们的(已知)性质外,本文还旨在从具有相似性质的函数组、目标空间规范化和问题实例的角度给出我们方法背后的基本原理。后者使我们能够轻松比较确定性和随机求解器的性能,这是基准测试中经常被忽视的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
期刊最新文献
Tail Bounds on the Runtime of Categorical Compact Genetic Algorithm. Optimizing Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms. Genetic Programming for Automatically Evolving Multiple Features to Classification. A Tri-Objective Method for Bi-Objective Feature Selection in Classification. Preliminary Analysis of Simple Novelty Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1