An evaluation study of biclusters visualization techniques of gene expression data.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2021-10-27 DOI:10.1515/jib-2021-0019
Haithem Aouabed, Mourad Elloumi, Rodrigo Santamaría
{"title":"An evaluation study of biclusters visualization techniques of gene expression data.","authors":"Haithem Aouabed,&nbsp;Mourad Elloumi,&nbsp;Rodrigo Santamaría","doi":"10.1515/jib-2021-0019","DOIUrl":null,"url":null,"abstract":"<p><p><i>Biclustering</i> is a non-supervised data mining technique used to analyze gene expression data, it consists to classify subgroups of genes that have similar behavior under subgroups of conditions. The classified genes can have independent behavior under other subgroups of conditions. Discovering such co-expressed genes, called <i>biclusters</i>, can be helpful to find specific biological features such as gene interactions under different circumstances. Compared to clustering, biclustering has two main characteristics: <i>bi-dimensionality</i> which means grouping both genes and conditions simultaneously and <i>overlapping</i> which means allowing genes to be in more than one bicluster at the same time. Biclustering algorithms, which continue to be developed at a constant pace, give as output a large number of overlapping biclusters. Visualizing groups of biclusters is still a non-trivial task due to their overlapping. In this paper, we present the most interesting techniques to visualize groups of biclusters and evaluate them.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709740/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Biclustering is a non-supervised data mining technique used to analyze gene expression data, it consists to classify subgroups of genes that have similar behavior under subgroups of conditions. The classified genes can have independent behavior under other subgroups of conditions. Discovering such co-expressed genes, called biclusters, can be helpful to find specific biological features such as gene interactions under different circumstances. Compared to clustering, biclustering has two main characteristics: bi-dimensionality which means grouping both genes and conditions simultaneously and overlapping which means allowing genes to be in more than one bicluster at the same time. Biclustering algorithms, which continue to be developed at a constant pace, give as output a large number of overlapping biclusters. Visualizing groups of biclusters is still a non-trivial task due to their overlapping. In this paper, we present the most interesting techniques to visualize groups of biclusters and evaluate them.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因表达数据双聚类可视化技术的评价研究。
双聚类是一种用于分析基因表达数据的非监督数据挖掘技术,它包括对在子组条件下具有相似行为的基因进行分类。分类的基因在其他亚组条件下可以有独立的行为。发现这种被称为双聚类的共表达基因有助于发现特定的生物学特征,如不同环境下的基因相互作用。与聚类相比,双聚类有两个主要特点:双维性,即同时对基因和条件进行分组;重叠性,即允许基因同时在多个双聚类中。双聚类算法,继续以恒定的速度发展,输出大量重叠的双聚类。由于它们的重叠,可视化双簇组仍然是一项重要的任务。在本文中,我们提出了最有趣的技术来可视化双聚类群并评估它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. Leonhard Med, a trusted research environment for processing sensitive research data. Exploring animal behaviour multilayer networks in immersive environments - a conceptual framework. Inferences on the evolution of the ascorbic acid synthesis pathway in insects using Phylogenetic Tree Collapser (PTC), a tool for the automated collapsing of phylogenetic trees using taxonomic information. Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1