Developmental changes within the extended face processing network: A cross-sectional functional magnetic resonance imaging study

IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Developmental Neurobiology Pub Date : 2021-10-22 DOI:10.1002/dneu.22858
Isabell Sahraei, Franziska E. Hildesheim, Ina Thome, Roman Kessler, Kristin M. Rusch, Jens Sommer, Inge Kamp-Becker, Rudolf Stark, Andreas Jansen
{"title":"Developmental changes within the extended face processing network: A cross-sectional functional magnetic resonance imaging study","authors":"Isabell Sahraei,&nbsp;Franziska E. Hildesheim,&nbsp;Ina Thome,&nbsp;Roman Kessler,&nbsp;Kristin M. Rusch,&nbsp;Jens Sommer,&nbsp;Inge Kamp-Becker,&nbsp;Rudolf Stark,&nbsp;Andreas Jansen","doi":"10.1002/dneu.22858","DOIUrl":null,"url":null,"abstract":"<p>In the field of face processing, the so-called “core network” has been intensively researched. Its neural activity can be reliably detected in children and adults using functional magnetic resonance imaging (fMRI). However, the core network's counterpart, the so-called “extended network,” has been less researched. In the present study, we compared children's and adults’ brain activity in the extended system, in particular in the amygdala, the insula, and the inferior frontal gyrus (IFG). Using fMRI, we compared the brain activation pattern between children aged 7–9 years and adults during an emotional face processing task. On the one hand, children showed increased activity in the extended face processing system in relation to adults, particularly in the left amygdala, the right insula, and the left IFG. On the other hand, lateralization indices revealed a “leftward bias” in children's IFG compared to adults. These results suggest that brain activity associated with face processing is characterized by a developmental decrease in activity. They further show that the development is associated with a rightward migration of face-related IFG activation, possibly due to the competition for neural space between several developing brain functions (“developmental competition hypothesis”).</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 1","pages":"64-76"},"PeriodicalIF":2.7000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22858","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22858","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

In the field of face processing, the so-called “core network” has been intensively researched. Its neural activity can be reliably detected in children and adults using functional magnetic resonance imaging (fMRI). However, the core network's counterpart, the so-called “extended network,” has been less researched. In the present study, we compared children's and adults’ brain activity in the extended system, in particular in the amygdala, the insula, and the inferior frontal gyrus (IFG). Using fMRI, we compared the brain activation pattern between children aged 7–9 years and adults during an emotional face processing task. On the one hand, children showed increased activity in the extended face processing system in relation to adults, particularly in the left amygdala, the right insula, and the left IFG. On the other hand, lateralization indices revealed a “leftward bias” in children's IFG compared to adults. These results suggest that brain activity associated with face processing is characterized by a developmental decrease in activity. They further show that the development is associated with a rightward migration of face-related IFG activation, possibly due to the competition for neural space between several developing brain functions (“developmental competition hypothesis”).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展面部处理网络的发育变化:横断面功能磁共振成像研究
在人脸处理领域,所谓的“核心网络”已经得到了深入的研究。使用功能磁共振成像(fMRI)可以可靠地检测儿童和成人的神经活动。然而,核心网络的对应物,即所谓的“扩展网络”,研究较少。在本研究中,我们比较了儿童和成人大脑扩展系统的活动,特别是杏仁核、脑岛和额下回(IFG)。使用功能磁共振成像,我们比较了7-9岁儿童和成人在处理情绪面孔任务时的大脑激活模式。一方面,与成人相比,儿童在扩展面部处理系统中表现出更强的活动,尤其是在左杏仁核、右脑岛和左IFG。另一方面,与成人相比,侧化指数显示儿童的IFG存在“左偏”。这些结果表明,与面部处理相关的大脑活动的特征是发育过程中活动的减少。他们进一步表明,这种发育与面部相关的IFG激活向右迁移有关,可能是由于几个发育中的大脑功能之间对神经空间的竞争(“发育竞争假说”)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
期刊最新文献
Overexpression of Growth Differentiation Factor 15 Reduces Neuronal Cell Damage Induced by Oxygen-Glucose Deprivation/Reoxygenation via Inhibiting Endoplasmic Reticulum Stress-Mediated Ferroptosis. Elevated Serum Homocysteine Levels Impair Embryonic Neurodevelopment by Dysregulating the Heat Shock Proteins. Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents. Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster Defective Hippocampal Primary Ciliary Function and Aberrant LKB1/AMPK Signaling Pathway Are Associated With the Inhibition of Autophagic Activity in Offspring Born to Mothers of Advanced Maternal Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1