Preconditioning with Cathodal High-Definition Transcranial Direct Current Stimulation Sensitizes the Primary Motor Cortex to Subsequent Intermittent Theta Burst Stimulation.

IF 3 4区 医学 Q2 NEUROSCIENCES Neural Plasticity Pub Date : 2021-10-21 eCollection Date: 2021-01-01 DOI:10.1155/2021/8966584
Wenjun Dai, Yao Geng, Hao Liu, Chuan Guo, Wenxiang Chen, Jinhui Ma, Jinjin Chen, Yanbing Jia, Ying Shen, Tong Wang
{"title":"Preconditioning with Cathodal High-Definition Transcranial Direct Current Stimulation Sensitizes the Primary Motor Cortex to Subsequent Intermittent Theta Burst Stimulation.","authors":"Wenjun Dai,&nbsp;Yao Geng,&nbsp;Hao Liu,&nbsp;Chuan Guo,&nbsp;Wenxiang Chen,&nbsp;Jinhui Ma,&nbsp;Jinjin Chen,&nbsp;Yanbing Jia,&nbsp;Ying Shen,&nbsp;Tong Wang","doi":"10.1155/2021/8966584","DOIUrl":null,"url":null,"abstract":"<p><p>Noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can induce long-term potentiation-like facilitation, but whether the combination of TMS and tDCS has additive effects is unclear. To address this issue, in this randomized crossover study, we investigated the effect of preconditioning with cathodal high-definition (HD) tDCS on intermittent theta burst stimulation- (iTBS-) induced plasticity in the left motor cortex. A total of 24 healthy volunteers received preconditioning with cathodal HD-tDCS or sham intervention prior to iTBS in a random order with a washout period of 1 week. The amplitude of motor evoked potentials (MEPs) was measured at baseline and at several time points (5, 10, 15, and 30 min) after iTBS to determine the effects of the intervention on cortical plasticity. Preconditioning with cathodal HD-tDCS followed by iTBS showed a greater increase in MEP amplitude than sham cathodal HD-tDCS preconditioning and iTBS at each time postintervention point, with longer-lasting after-effects on cortical excitability. These results demonstrate that preintervention with cathodal HD-tDCS primes the motor cortex for long-term potentiation induced by iTBS and is a potential strategy for improving the clinical outcome to guide therapeutic decisions.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553444/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2021/8966584","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can induce long-term potentiation-like facilitation, but whether the combination of TMS and tDCS has additive effects is unclear. To address this issue, in this randomized crossover study, we investigated the effect of preconditioning with cathodal high-definition (HD) tDCS on intermittent theta burst stimulation- (iTBS-) induced plasticity in the left motor cortex. A total of 24 healthy volunteers received preconditioning with cathodal HD-tDCS or sham intervention prior to iTBS in a random order with a washout period of 1 week. The amplitude of motor evoked potentials (MEPs) was measured at baseline and at several time points (5, 10, 15, and 30 min) after iTBS to determine the effects of the intervention on cortical plasticity. Preconditioning with cathodal HD-tDCS followed by iTBS showed a greater increase in MEP amplitude than sham cathodal HD-tDCS preconditioning and iTBS at each time postintervention point, with longer-lasting after-effects on cortical excitability. These results demonstrate that preintervention with cathodal HD-tDCS primes the motor cortex for long-term potentiation induced by iTBS and is a potential strategy for improving the clinical outcome to guide therapeutic decisions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阴极高清晰度经颅直流电刺激预处理使初级运动皮层对随后的间歇性θ波爆发刺激敏感。
无创脑刺激技术如经颅磁刺激(TMS)和经颅直流电刺激(tDCS)可以诱导长时程增强样促进,但TMS和tDCS联合使用是否具有叠加效应尚不清楚。为了解决这一问题,在这项随机交叉研究中,我们研究了阴极高清晰(HD) tDCS预处理对间歇性θ波爆发刺激(iTBS-)诱导的左侧运动皮层可塑性的影响。24名健康志愿者在iTBS前随机接受了阴极HD-tDCS预处理或假干预,洗脱期为1周。在基线和iTBS后的几个时间点(5、10、15和30分钟)测量运动诱发电位(MEPs)的振幅,以确定干预对皮质可塑性的影响。在干预后各时间点,经阴极HD-tDCS预处理后iTBS的MEP幅值均高于假阴极HD-tDCS预处理后iTBS的MEP幅值,且对皮质兴奋性的后效持续时间更长。这些结果表明,通过阴极HD-tDCS的预先干预,为iTBS诱导的长期增强运动皮层提供了启动,是改善临床结果以指导治疗决策的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
期刊最新文献
A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. Retracted: Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca2+-Activated K+ Channels. Acupuncture Alleviates CUMS-Induced Depression-Like Behaviors by Restoring Prefrontal Cortex Neuroplasticity. Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1