High-Dimensional Unbalanced Binary Classification by Genetic Programming with Multi-Criterion Fitness Evaluation and Selection

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Evolutionary Computation Pub Date : 2022-03-01 DOI:10.1162/evco_a_00304
Wenbin Pei;Bing Xue;Lin Shang;Mengjie Zhang
{"title":"High-Dimensional Unbalanced Binary Classification by Genetic Programming with Multi-Criterion Fitness Evaluation and Selection","authors":"Wenbin Pei;Bing Xue;Lin Shang;Mengjie Zhang","doi":"10.1162/evco_a_00304","DOIUrl":null,"url":null,"abstract":"High-dimensional unbalanced classification is challenging because of the joint effects of high dimensionality and class imbalance. Genetic programming (GP) has the potential benefits for use in high-dimensional classification due to its built-in capability to select informative features. However, once data are not evenly distributed, GP tends to develop biased classifiers which achieve a high accuracy on the majority class but a low accuracy on the minority class. Unfortunately, the minority class is often at least as important as the majority class. It is of importance to investigate how GP can be effectively utilized for high-dimensional unbalanced classification. In this article, to address the performance bias issue of GP, a new two-criterion fitness function is developed, which considers two criteria, that is, the approximation of area under the curve (AUC) and the classification clarity (i.e., how well a program can separate two classes). The obtained values on the two criteria are combined in pairs, instead of summing them together. Furthermore, this article designs a three-criterion tournament selection to effectively identify and select good programs to be used by genetic operators for generating offspring during the evolutionary learning process. The experimental results show that the proposed method achieves better classification performance than other compared methods.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"30 1","pages":"99-129"},"PeriodicalIF":4.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9808262/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

High-dimensional unbalanced classification is challenging because of the joint effects of high dimensionality and class imbalance. Genetic programming (GP) has the potential benefits for use in high-dimensional classification due to its built-in capability to select informative features. However, once data are not evenly distributed, GP tends to develop biased classifiers which achieve a high accuracy on the majority class but a low accuracy on the minority class. Unfortunately, the minority class is often at least as important as the majority class. It is of importance to investigate how GP can be effectively utilized for high-dimensional unbalanced classification. In this article, to address the performance bias issue of GP, a new two-criterion fitness function is developed, which considers two criteria, that is, the approximation of area under the curve (AUC) and the classification clarity (i.e., how well a program can separate two classes). The obtained values on the two criteria are combined in pairs, instead of summing them together. Furthermore, this article designs a three-criterion tournament selection to effectively identify and select good programs to be used by genetic operators for generating offspring during the evolutionary learning process. The experimental results show that the proposed method achieves better classification performance than other compared methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传规划的高维非平衡二值分类多准则适合度评价与选择
由于高维和类不平衡的共同作用,高维不平衡分类具有挑战性。遗传程序设计(GP)由于其内置的选择信息特征的能力,在高维分类中具有潜在的优势。然而,一旦数据不均匀分布,GP倾向于开发有偏差的分类器,其在多数类上实现高精度,但在少数类上实现低精度。不幸的是,少数阶级往往至少和多数阶级一样重要。研究如何有效地利用GP进行高维不平衡分类具有重要意义。在本文中,为了解决GP的性能偏差问题,开发了一个新的双标准适应度函数,该函数考虑了两个标准,即曲线下面积(AUC)的近似值和分类清晰度(即程序可以在多大程度上区分两类)。根据这两个标准获得的值成对组合,而不是将它们相加。此外,本文设计了一个三标准锦标赛选择,以有效地识别和选择好的程序,供遗传算子在进化学习过程中用于生成后代。实验结果表明,与其他比较方法相比,该方法具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
期刊最新文献
Genetic Programming-based Feature Selection for Symbolic Regression on Incomplete Data. Tail Bounds on the Runtime of Categorical Compact Genetic Algorithm. Optimizing Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms. Genetic Programming for Automatically Evolving Multiple Features to Classification. A Tri-Objective Method for Bi-Objective Feature Selection in Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1