{"title":"Investigation of Regression-Based Effect Size Methods Developed in Single-Subject Studies.","authors":"Nihal Sen","doi":"10.1177/01454455211054018","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to provide a brief introduction to effect size calculation in single-subject design studies, including a description of nonparametric and regression-based effect sizes. We then focus the rest of the tutorial on common regression-based methods used to calculate effect size in single-subject experimental studies. We start by first describing the difference between five regression-based methods (Gorsuch, White et al., Center et al., Allison and Gorman, Huitema and McKean). This is followed by an example using the five regression-based effect size methods and a demonstration how these methods can be applied using a sample data set. In this way, the question of how the values obtained from different effect size methods differ was answered. The specific regression models used in these five regression-based methods and how these models can be obtained from the SPSS program were shown. <i>R</i><sup>2</sup> values obtained from these five methods were converted to Cohen's <i>d</i> value and compared in this study. The <i>d</i> values obtained from the same data set were estimated as 0.003, 0.357, 2.180, 3.470, and 2.108 for the Allison and Gorman, Gorsuch, White et al., Center et al., as well as for Huitema and McKean methods, respectively. A brief description of selected statistical programs available to conduct regression-based methods was given.</p>","PeriodicalId":48037,"journal":{"name":"Behavior Modification","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Modification","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01454455211054018","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 2
Abstract
The purpose of this study is to provide a brief introduction to effect size calculation in single-subject design studies, including a description of nonparametric and regression-based effect sizes. We then focus the rest of the tutorial on common regression-based methods used to calculate effect size in single-subject experimental studies. We start by first describing the difference between five regression-based methods (Gorsuch, White et al., Center et al., Allison and Gorman, Huitema and McKean). This is followed by an example using the five regression-based effect size methods and a demonstration how these methods can be applied using a sample data set. In this way, the question of how the values obtained from different effect size methods differ was answered. The specific regression models used in these five regression-based methods and how these models can be obtained from the SPSS program were shown. R2 values obtained from these five methods were converted to Cohen's d value and compared in this study. The d values obtained from the same data set were estimated as 0.003, 0.357, 2.180, 3.470, and 2.108 for the Allison and Gorman, Gorsuch, White et al., Center et al., as well as for Huitema and McKean methods, respectively. A brief description of selected statistical programs available to conduct regression-based methods was given.
期刊介绍:
For two decades, researchers and practitioners have turned to Behavior Modification for current scholarship on applied behavior modification. Starting in 1995, in addition to keeping you informed on assessment and modification techniques relevant to psychiatric, clinical, education, and rehabilitation settings, Behavior Modification revised and expanded its focus to include treatment manuals and program descriptions. With these features you can follow the process of clinical research and see how it can be applied to your own work. And, with Behavior Modification, successful clinical and administrative experts have an outlet for sharing their solutions in the field.