Metataxonomic and metabolomic evidence of biofilm homeostasis disruption related to caries: An in vitro study.

IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Molecular Oral Microbiology Pub Date : 2022-04-01 Epub Date: 2022-02-19 DOI:10.1111/omi.12363
María C Sánchez, Angela Velapatiño, Arancha Llama-Palacios, Alberto Valdés, Alejandro Cifuentes, María J Ciudad, Luis Collado
{"title":"Metataxonomic and metabolomic evidence of biofilm homeostasis disruption related to caries: An in vitro study.","authors":"María C Sánchez,&nbsp;Angela Velapatiño,&nbsp;Arancha Llama-Palacios,&nbsp;Alberto Valdés,&nbsp;Alejandro Cifuentes,&nbsp;María J Ciudad,&nbsp;Luis Collado","doi":"10.1111/omi.12363","DOIUrl":null,"url":null,"abstract":"<p><p>The ecological dysbiosis of a biofilm includes not only bacterial changes but also changes in their metabolism. Related to oral biofilms, changes in metabolic activity are crucial endpoint, linked directly to the pathogenicity of oral diseases. Despite the advances in caries research, detailed microbial and metabolomic etiology is yet to be fully clarified. To advance this knowledge, a meta-taxonomic approach based on 16S rRNA gene sequencing and an untargeted metabolomic approach based on an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis (UHPLC/Q-TOF-MS) were conducted. To this end, an in vitro biofilm model derived from the saliva of healthy participants were developed, under commensal and cariogenic conditions by adding sucrose as the disease trigger. The cariogenic biofilms showed a significant increase of Firmicutes phyla (p = 0.019), due to the significant increase in the genus Streptococcus (p = 0.010), and Fusobacter (p < 0.001), by increase Fusobacterium (p < 0.001) and Sphingomonas (p = 0.024), while suffered a decrease in Actinobacteria (p < 0.001). As a consequence of the shift in microbiota composition, significant extracellular metabolomics changes were detected, showed 59 metabolites of the 120 identified significantly different in terms of relative abundance between the cariogenic/commensal biofilms (Rate of change > 2 and FDR < 0.05). Forty-two metabolites were significantly higher in abundance in the cariogenic biofilms, whereas 17 metabolites were associated significantly with the commensal biofilms, principally related protein metabolism, with peptides and amino acids as protagonists, latter represented by histidine, arginine, l-methionine, glutamic acid, and phenylalanine derivatives.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d7/32/OMI-37-81.PMC9303636.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12363","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 6

Abstract

The ecological dysbiosis of a biofilm includes not only bacterial changes but also changes in their metabolism. Related to oral biofilms, changes in metabolic activity are crucial endpoint, linked directly to the pathogenicity of oral diseases. Despite the advances in caries research, detailed microbial and metabolomic etiology is yet to be fully clarified. To advance this knowledge, a meta-taxonomic approach based on 16S rRNA gene sequencing and an untargeted metabolomic approach based on an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis (UHPLC/Q-TOF-MS) were conducted. To this end, an in vitro biofilm model derived from the saliva of healthy participants were developed, under commensal and cariogenic conditions by adding sucrose as the disease trigger. The cariogenic biofilms showed a significant increase of Firmicutes phyla (p = 0.019), due to the significant increase in the genus Streptococcus (p = 0.010), and Fusobacter (p < 0.001), by increase Fusobacterium (p < 0.001) and Sphingomonas (p = 0.024), while suffered a decrease in Actinobacteria (p < 0.001). As a consequence of the shift in microbiota composition, significant extracellular metabolomics changes were detected, showed 59 metabolites of the 120 identified significantly different in terms of relative abundance between the cariogenic/commensal biofilms (Rate of change > 2 and FDR < 0.05). Forty-two metabolites were significantly higher in abundance in the cariogenic biofilms, whereas 17 metabolites were associated significantly with the commensal biofilms, principally related protein metabolism, with peptides and amino acids as protagonists, latter represented by histidine, arginine, l-methionine, glutamic acid, and phenylalanine derivatives.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与龋齿相关的生物膜稳态破坏的元分类学和代谢组学证据:一项体外研究。
生物膜的生态失调不仅包括细菌的变化,还包括其代谢的变化。与口腔生物膜相关,代谢活性的变化是至关重要的终点,与口腔疾病的致病性直接相关。尽管龋齿研究取得了进展,但详细的微生物和代谢组学病因尚不完全清楚。为了进一步了解这一知识,研究人员开展了基于16S rRNA基因测序的元分类方法和基于超高效液相色谱-四极杆飞行时间质谱分析(UHPLC/Q-TOF-MS)的非靶向代谢组学方法。为此,在共生和致龋条件下,通过添加蔗糖作为疾病触发器,建立了一个来自健康参与者唾液的体外生物膜模型。由于链球菌属(p = 0.010)和梭杆菌属(p 2和FDR)的显著增加,致龋生物膜显示厚壁菌门(p = 0.019)显著增加
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Oral Microbiology
Molecular Oral Microbiology DENTISTRY, ORAL SURGERY & MEDICINE-MICROBIOLOGY
CiteScore
6.50
自引率
5.40%
发文量
46
审稿时长
>12 weeks
期刊介绍: Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections. Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal. The journal does not publish Short Communications or Letters to the Editor. Molecular Oral Microbiology is published bimonthly.
期刊最新文献
Nicotinamide employs a starvation strategy against Porphyromonas gingivalis virulence by inhibiting the heme uptake system and gingipain activities. Polyketides/nonribosomal peptides from Streptococcus mutans and their ecological roles in dental biofilm. Inhibition of Streptococcus mutans growth and biofilm formation through protein acetylation. Tobacco-enhanced biofilm formation by Porphyromonas gingivalis and other oral microbes. Oral Lactobacillus zeae exacerbates the pathological manifestation of periodontitis in a mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1