Evaluation of the Effects of Exposure to Power-Frequency Magnetic Fields on the Differentiation of Hematopoietic Stem/Progenitor Cells Using Human-Induced Pluripotent Stem Cells

IF 1.8 3区 生物学 Q3 BIOLOGY Bioelectromagnetics Pub Date : 2022-02-07 DOI:10.1002/bem.22394
Masayuki Takahashi, Naoko Furuya
{"title":"Evaluation of the Effects of Exposure to Power-Frequency Magnetic Fields on the Differentiation of Hematopoietic Stem/Progenitor Cells Using Human-Induced Pluripotent Stem Cells","authors":"Masayuki Takahashi,&nbsp;Naoko Furuya","doi":"10.1002/bem.22394","DOIUrl":null,"url":null,"abstract":"<p>The causal association between exposure to power-frequency magnetic fields (MFs) and childhood leukemia has been under discussion. Although evidence from experimental studies is required for a conclusion to be reached, only a few studies have focused on the effects of MF exposure on the human hematopoietic system directly related to leukemogenesis. Here, we established an in vitro protocol to simulate the differentiation of human mesodermal cells to hematopoietic stem progenitor cells (HSPCs) using human-induced pluripotent stem cells. Furthermore, we introduced MF in the protocol to study the effects of exposure. After a continuous exposure to 0–300 mT of 50-Hz MFs during the differentiation process, the efficiency of differentiation of mesodermal cells into HSPCs was analyzed in a single-blinded manner. The percentage of emerged HSPCs from mesodermal cells in groups exposed to 50-Hz MFs indicated a lack of significant changes compared with those in the sham-exposed group. These results suggest that exposure to 50-Hz MFs up to 300 mT does not affect the differentiation of human mesodermal cells to HSPCs, which may be involved in the initial process of leukemogenesis. © 2022 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"43 3","pages":"174-181"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/6d/BEM-43-174.PMC9304145.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22394","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The causal association between exposure to power-frequency magnetic fields (MFs) and childhood leukemia has been under discussion. Although evidence from experimental studies is required for a conclusion to be reached, only a few studies have focused on the effects of MF exposure on the human hematopoietic system directly related to leukemogenesis. Here, we established an in vitro protocol to simulate the differentiation of human mesodermal cells to hematopoietic stem progenitor cells (HSPCs) using human-induced pluripotent stem cells. Furthermore, we introduced MF in the protocol to study the effects of exposure. After a continuous exposure to 0–300 mT of 50-Hz MFs during the differentiation process, the efficiency of differentiation of mesodermal cells into HSPCs was analyzed in a single-blinded manner. The percentage of emerged HSPCs from mesodermal cells in groups exposed to 50-Hz MFs indicated a lack of significant changes compared with those in the sham-exposed group. These results suggest that exposure to 50-Hz MFs up to 300 mT does not affect the differentiation of human mesodermal cells to HSPCs, which may be involved in the initial process of leukemogenesis. © 2022 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工频磁场对人诱导多能干细胞分化造血干细胞/祖细胞影响的评价
暴露于工频磁场(MFs)和儿童白血病之间的因果关系一直在讨论中。虽然需要实验研究的证据才能得出结论,但只有少数研究集中于MF暴露对与白血病发生直接相关的人类造血系统的影响。在这里,我们建立了一个体外方案来模拟人诱导的多能干细胞从人中胚层细胞向造血干细胞祖细胞(HSPCs)分化。此外,我们在方案中引入了MF来研究暴露的影响。在分化过程中连续暴露于0-300 mT 50-Hz的MFs后,采用单盲方法分析中胚层细胞向HSPCs分化的效率。与假暴露组相比,暴露于50 hz MFs组中中胚层细胞中出现的HSPCs的百分比没有明显变化。这些结果表明,暴露在50 hz至300 mT的高强度辐射下,不会影响人中胚层细胞向造血干细胞的分化,而造血干细胞可能参与了白血病发生的初始过程。©2022作者。《生物电磁学》由Wiley期刊有限责任公司代表生物电磁学学会出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
期刊最新文献
The effect of mobile phone electromagnetic fields on the human resting state wake EEG and event-related potential: A systematic review and meta-analysis. Issue Information Numerical and analytical inspection of magnetic field effects in the radical pair mechanism by a simplified rate equation model Action potential threshold variability for different electrostimulation models and its potential impact on occupational exposure limit values. Characterising core body temperature response of free-moving C57BL/6 mice to 1.95 GHz whole-body radiofrequency-electromagnetic fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1