Michael H Haischer, Jacob Howenstein, Michelle Sabick, Kristof Kipp
{"title":"Torso kinematic patterns associated with throwing shoulder joint loading and ball velocity in Little League pitchers.","authors":"Michael H Haischer, Jacob Howenstein, Michelle Sabick, Kristof Kipp","doi":"10.1080/14763141.2021.2015427","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to investigate the associations between kinematic patterns of the torso segment and shoulder joint loading as well as pitching performance in youth pitchers. Twenty-four Little League pitchers threw fastballs while motion capture and force plate data were collected and ball speed was measured with a radar gun. Three-dimensional torso segment kinematics (absolute angles and angular velocities) and shoulder net joint moments (NJM) and forces were calculated. The time-series kinematic data were used as inputs to a principal components analysis to extract torso movement patterns. Associations between torso movement patterns and discrete peak shoulder NJM, compressive force, and ball speed were investigated with nonparametric correlations. Torso segment motion patterns related to forward flexion, lateral flexion (away from pitching arm), and axial rotation and rotational velocities were associated with shoulder joint kinetics and ball speed. In addition, excessive axial (transverse plane) torso rotation at ball release correlated positively with shoulder joint loads but not ball speed, which may indicate the prospect for decreasing joint kinetics while maintaining pitching performance through targeted interventions. These results provide a deeper understanding about the interrelationships between torso kinematic patterns, shoulder kinetics, and pitching performance.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"2263-2276"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2021.2015427","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to investigate the associations between kinematic patterns of the torso segment and shoulder joint loading as well as pitching performance in youth pitchers. Twenty-four Little League pitchers threw fastballs while motion capture and force plate data were collected and ball speed was measured with a radar gun. Three-dimensional torso segment kinematics (absolute angles and angular velocities) and shoulder net joint moments (NJM) and forces were calculated. The time-series kinematic data were used as inputs to a principal components analysis to extract torso movement patterns. Associations between torso movement patterns and discrete peak shoulder NJM, compressive force, and ball speed were investigated with nonparametric correlations. Torso segment motion patterns related to forward flexion, lateral flexion (away from pitching arm), and axial rotation and rotational velocities were associated with shoulder joint kinetics and ball speed. In addition, excessive axial (transverse plane) torso rotation at ball release correlated positively with shoulder joint loads but not ball speed, which may indicate the prospect for decreasing joint kinetics while maintaining pitching performance through targeted interventions. These results provide a deeper understanding about the interrelationships between torso kinematic patterns, shoulder kinetics, and pitching performance.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.