Marc Bertaux, Arnaud Berenbaum, Anna-Luisa Di Stefano, Laura Rozenblum, Marine Soret, Sebastien Bergeret, Khé Hoang-Xuan, Laure-Eugenie Tainturier, Brian Sgard, Marie-Odile Habert, Jean-Yves Delattre, Caroline Dehais, Ahmed Idbaih, Nadya Pyatigorskaya, Aurelie Kas
{"title":"Hybrid [<sup>18</sup>F]-F-DOPA PET/MRI Interpretation Criteria and Scores for Glioma Follow-up After Radiotherapy.","authors":"Marc Bertaux, Arnaud Berenbaum, Anna-Luisa Di Stefano, Laura Rozenblum, Marine Soret, Sebastien Bergeret, Khé Hoang-Xuan, Laure-Eugenie Tainturier, Brian Sgard, Marie-Odile Habert, Jean-Yves Delattre, Caroline Dehais, Ahmed Idbaih, Nadya Pyatigorskaya, Aurelie Kas","doi":"10.1007/s00062-022-01139-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong><sup>18</sup>F‑fluoro-L‑3,4‑dihydroxyphenylalanine positron emission tomography (F‑DOPA PET) is used in glioma follow-up after radiotherapy to discriminate treatment-related changes (TRC) from tumor progression (TP). We compared the performances of a combined PET and MRI analysis with F‑DOPA current standard of interpretation.</p><p><strong>Methods: </strong>We included 76 consecutive patients showing at least one gadolinium-enhanced lesion on the T1‑w MRI sequence (T1G). Two nuclear medicine physicians blindly analyzed PET/MRI images. In addition to the conventional PET analysis, they looked for F‑DOPA uptake(s) outside T1G-enhanced areas (T1G/PET), in the white matter (WM/PET), for T1G-enhanced lesion(s) without sufficiently concordant F‑DOPA uptake (T1G+/PET), and F‑DOPA uptake(s) away from hemorrhagic changes as shown with a susceptibility weighted imaging sequence (SWI/PET). We measured lesions' F‑DOPA uptake ratio using healthy brain background (TBR) and striatum (T/S) as references, and lesions' perfusion with arterial spin labelling cerebral blood flow maps (rCBF). Scores were determined by logistic regression.</p><p><strong>Results: </strong>53 and 23 patients were diagnosed with TP and TRC, respectively. The accuracies were 74% for T/S, 76% for TBR, and 84% for rCBF, with best cut-off values of 1.3, 3.7 and 1.25, respectively. For hybrid variables, best accuracies were obtained with conventional analysis (82%), T1G+/PET (82%) and SWI/PET (81%). T1G+/PET, SWI/PET and rCBF ≥ 1.25 were selected to construct a 3-point score. It outperformed conventional analysis and rCBF with an AUC of 0.94 and an accuracy of 87%.</p><p><strong>Conclusions: </strong>Our scoring approach combining F‑DOPA PET and MRI provided better accuracy than conventional PET analyses for distinguishing TP from TRC in our patients after radiation therapy.</p>","PeriodicalId":49298,"journal":{"name":"Clinical Neuroradiology","volume":"32 3","pages":"735-747"},"PeriodicalIF":2.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00062-022-01139-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Objective: 18F‑fluoro-L‑3,4‑dihydroxyphenylalanine positron emission tomography (F‑DOPA PET) is used in glioma follow-up after radiotherapy to discriminate treatment-related changes (TRC) from tumor progression (TP). We compared the performances of a combined PET and MRI analysis with F‑DOPA current standard of interpretation.
Methods: We included 76 consecutive patients showing at least one gadolinium-enhanced lesion on the T1‑w MRI sequence (T1G). Two nuclear medicine physicians blindly analyzed PET/MRI images. In addition to the conventional PET analysis, they looked for F‑DOPA uptake(s) outside T1G-enhanced areas (T1G/PET), in the white matter (WM/PET), for T1G-enhanced lesion(s) without sufficiently concordant F‑DOPA uptake (T1G+/PET), and F‑DOPA uptake(s) away from hemorrhagic changes as shown with a susceptibility weighted imaging sequence (SWI/PET). We measured lesions' F‑DOPA uptake ratio using healthy brain background (TBR) and striatum (T/S) as references, and lesions' perfusion with arterial spin labelling cerebral blood flow maps (rCBF). Scores were determined by logistic regression.
Results: 53 and 23 patients were diagnosed with TP and TRC, respectively. The accuracies were 74% for T/S, 76% for TBR, and 84% for rCBF, with best cut-off values of 1.3, 3.7 and 1.25, respectively. For hybrid variables, best accuracies were obtained with conventional analysis (82%), T1G+/PET (82%) and SWI/PET (81%). T1G+/PET, SWI/PET and rCBF ≥ 1.25 were selected to construct a 3-point score. It outperformed conventional analysis and rCBF with an AUC of 0.94 and an accuracy of 87%.
Conclusions: Our scoring approach combining F‑DOPA PET and MRI provided better accuracy than conventional PET analyses for distinguishing TP from TRC in our patients after radiation therapy.
期刊介绍:
Clinical Neuroradiology provides current information, original contributions, and reviews in the field of neuroradiology. An interdisciplinary approach is accomplished by diagnostic and therapeutic contributions related to associated subjects.
The international coverage and relevance of the journal is underlined by its being the official journal of the German, Swiss, and Austrian Societies of Neuroradiology.