{"title":"Characterization of folic acid-functionalized PLA-PEG nanomicelle to deliver Letrozole: A nanoinformatics study.","authors":"Neda Rostami, Reza Davarnejad","doi":"10.1049/nbt2.12073","DOIUrl":null,"url":null,"abstract":"<p><p>Effective cancer treatment is currently the number one challenge to human health. To date, several treatment methods have been introduced for cancer cell targeting. Among the proposed new methods for attacking cancer cells, nanotechnology has attracted much attention. Hence, various nanocarriers have been developed for targeted delivery of available drugs and improve their effectiveness against malignant cells. The PLA-PEG functionalised with folic acid (PLA-PEG-FA) is one of the nanocarriers with a limited range of applications for targeting cancer cells. In this investigation, different types of in-silico methods such as molecular docking approach, molecular dynamics simulation and free energy calculations are employed to characterise the carriers studied. The effectiveness of PLA-PEG-FA and PLA-PEG in delivering Letrozole as an aromatase inhibitor in cancer cells is examined. It is found that in the presence of folic acid, the stability and cell membrane permeability of nanomicelle are increased. Therefore, PLA-PEG-FA can be considered as a versatile carrier that can increase the effectiveness of aromatase inhibitors (such as Letrozole) and reduce their side effects.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"103-114"},"PeriodicalIF":4.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/nbt2.12073","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Effective cancer treatment is currently the number one challenge to human health. To date, several treatment methods have been introduced for cancer cell targeting. Among the proposed new methods for attacking cancer cells, nanotechnology has attracted much attention. Hence, various nanocarriers have been developed for targeted delivery of available drugs and improve their effectiveness against malignant cells. The PLA-PEG functionalised with folic acid (PLA-PEG-FA) is one of the nanocarriers with a limited range of applications for targeting cancer cells. In this investigation, different types of in-silico methods such as molecular docking approach, molecular dynamics simulation and free energy calculations are employed to characterise the carriers studied. The effectiveness of PLA-PEG-FA and PLA-PEG in delivering Letrozole as an aromatase inhibitor in cancer cells is examined. It is found that in the presence of folic acid, the stability and cell membrane permeability of nanomicelle are increased. Therefore, PLA-PEG-FA can be considered as a versatile carrier that can increase the effectiveness of aromatase inhibitors (such as Letrozole) and reduce their side effects.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico