Characterization of folic acid-functionalized PLA-PEG nanomicelle to deliver Letrozole: A nanoinformatics study.

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-06-01 Epub Date: 2021-11-23 DOI:10.1049/nbt2.12073
Neda Rostami, Reza Davarnejad
{"title":"Characterization of folic acid-functionalized PLA-PEG nanomicelle to deliver Letrozole: A nanoinformatics study.","authors":"Neda Rostami, Reza Davarnejad","doi":"10.1049/nbt2.12073","DOIUrl":null,"url":null,"abstract":"<p><p>Effective cancer treatment is currently the number one challenge to human health. To date, several treatment methods have been introduced for cancer cell targeting. Among the proposed new methods for attacking cancer cells, nanotechnology has attracted much attention. Hence, various nanocarriers have been developed for targeted delivery of available drugs and improve their effectiveness against malignant cells. The PLA-PEG functionalised with folic acid (PLA-PEG-FA) is one of the nanocarriers with a limited range of applications for targeting cancer cells. In this investigation, different types of in-silico methods such as molecular docking approach, molecular dynamics simulation and free energy calculations are employed to characterise the carriers studied. The effectiveness of PLA-PEG-FA and PLA-PEG in delivering Letrozole as an aromatase inhibitor in cancer cells is examined. It is found that in the presence of folic acid, the stability and cell membrane permeability of nanomicelle are increased. Therefore, PLA-PEG-FA can be considered as a versatile carrier that can increase the effectiveness of aromatase inhibitors (such as Letrozole) and reduce their side effects.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"103-114"},"PeriodicalIF":4.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/nbt2.12073","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Effective cancer treatment is currently the number one challenge to human health. To date, several treatment methods have been introduced for cancer cell targeting. Among the proposed new methods for attacking cancer cells, nanotechnology has attracted much attention. Hence, various nanocarriers have been developed for targeted delivery of available drugs and improve their effectiveness against malignant cells. The PLA-PEG functionalised with folic acid (PLA-PEG-FA) is one of the nanocarriers with a limited range of applications for targeting cancer cells. In this investigation, different types of in-silico methods such as molecular docking approach, molecular dynamics simulation and free energy calculations are employed to characterise the carriers studied. The effectiveness of PLA-PEG-FA and PLA-PEG in delivering Letrozole as an aromatase inhibitor in cancer cells is examined. It is found that in the presence of folic acid, the stability and cell membrane permeability of nanomicelle are increased. Therefore, PLA-PEG-FA can be considered as a versatile carrier that can increase the effectiveness of aromatase inhibitors (such as Letrozole) and reduce their side effects.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叶酸功能化聚乳酸-聚乙二醇(PLA-PEG)纳米胶束递送来曲唑的特性:纳米信息学研究。
有效治疗癌症是目前人类健康面临的头号挑战。迄今为止,已有多种针对癌细胞的治疗方法问世。在提出的攻击癌细胞的新方法中,纳米技术备受关注。因此,人们开发了各种纳米载体,用于靶向递送现有药物,并提高其对恶性细胞的疗效。叶酸功能化聚乳酸-聚乙二醇(PLA-PEG-FA)是其中一种纳米载体,但它在靶向癌细胞方面的应用范围有限。在这项研究中,采用了分子对接法、分子动力学模拟和自由能计算等不同类型的室内方法来表征所研究的载体。研究考察了聚乳酸-聚乙二醇-脂肪酸和聚乳酸-聚乙二醇在癌细胞中递送芳香化酶抑制剂来曲唑的有效性。研究发现,在叶酸存在的情况下,纳米胶束的稳定性和细胞膜渗透性都有所提高。因此,PLA-PEG-FA 可被视为一种多功能载体,可提高芳香化酶抑制剂(如来曲唑)的有效性并减少其副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Descriptor Engineering for Machine-Learning-Based Performance Prediction in Organic Solar Cells: A Mini Review Realization of High-Performance Solar-Blind Ultraviolet Detection through Substrate and Bandgap Engineering: Construction and Mechanism of the STO/Ga2O3 Heterojunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1