Chitosan-coated pore wall polycaprolactone three-dimensional porous scaffolds fabricated by porogen leaching method for bone tissue engineering: a comparative study on blending technique to fabricate scaffolds.

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Progress in Biomaterials Pub Date : 2021-12-01 Epub Date: 2021-11-25 DOI:10.1007/s40204-021-00172-5
Deepak Poddar, Misba Majood, Ankita Singh, Sujata Mohanty, Purnima Jain
{"title":"Chitosan-coated pore wall polycaprolactone three-dimensional porous scaffolds fabricated by porogen leaching method for bone tissue engineering: a comparative study on blending technique to fabricate scaffolds.","authors":"Deepak Poddar, Misba Majood, Ankita Singh, Sujata Mohanty, Purnima Jain","doi":"10.1007/s40204-021-00172-5","DOIUrl":null,"url":null,"abstract":"<p><p>One of the significant challenges in the fabrication of scaffolds for tissue engineering lies in the direct interaction of bioactive agents with cells in the scaffolds matrix, which curbs the effectiveness of bioactive agents resulting in diminished cell recognition and attachment ability of the scaffolds. Here, three-dimensional porous scaffolds were fabricated using polycaprolactone (PCL) and chitosan, by two approaches, i.e., blending and surface coating to compare their overall effectiveness. Blended scaffolds (Chi-PCL) were compared with the scaffolds fabricated using surface coating technique, where chitosan was coated on the pore wall of PCL scaffolds (C-PCL). The C-PCL exhibited a collective improvement in bioactivities of the stem cell on the scaffold, because of the cell compatible environment provided by the presence of chitosan over the scaffolds interface. The C-PCL showed the enhanced cell attachment and proliferation behavior of the scaffolds along with two-fold increase in hemolysis compatibility compared to Chi-PCL. Furthermore, the compression strength in C-PCL increased by 24.52% and 8.62% increase in total percentage porosity compared to Chi-PCL was attained. Along with this, all the bone markers showed significant upregulation in C-PCL scaffolds, which supported the surface coating technique over the conventional methods, even though the pore size of C-PCL was compromised by 19.98% compared with Chi-PCL.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":"10 4","pages":"281-297"},"PeriodicalIF":4.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633273/pdf/40204_2021_Article_172.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00172-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the significant challenges in the fabrication of scaffolds for tissue engineering lies in the direct interaction of bioactive agents with cells in the scaffolds matrix, which curbs the effectiveness of bioactive agents resulting in diminished cell recognition and attachment ability of the scaffolds. Here, three-dimensional porous scaffolds were fabricated using polycaprolactone (PCL) and chitosan, by two approaches, i.e., blending and surface coating to compare their overall effectiveness. Blended scaffolds (Chi-PCL) were compared with the scaffolds fabricated using surface coating technique, where chitosan was coated on the pore wall of PCL scaffolds (C-PCL). The C-PCL exhibited a collective improvement in bioactivities of the stem cell on the scaffold, because of the cell compatible environment provided by the presence of chitosan over the scaffolds interface. The C-PCL showed the enhanced cell attachment and proliferation behavior of the scaffolds along with two-fold increase in hemolysis compatibility compared to Chi-PCL. Furthermore, the compression strength in C-PCL increased by 24.52% and 8.62% increase in total percentage porosity compared to Chi-PCL was attained. Along with this, all the bone markers showed significant upregulation in C-PCL scaffolds, which supported the surface coating technique over the conventional methods, even though the pore size of C-PCL was compromised by 19.98% compared with Chi-PCL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖包覆孔壁聚己内酯三维多孔支架的制孔浸出法用于骨组织工程:混合技术制备支架的比较研究。
制造组织工程支架面临的重大挑战之一在于生物活性剂与支架基质中的细胞直接相互作用,这会抑制生物活性剂的有效性,导致支架的细胞识别和附着能力降低。在此,我们使用聚己内酯(PCL)和壳聚糖,通过混合和表面涂层两种方法制作了三维多孔支架,以比较它们的整体效果。混合支架(Chi-PCL)与采用表面涂层技术(在 PCL 支架的孔壁上涂覆壳聚糖)制成的支架(C-PCL)进行了比较。C-PCL显示出支架上干细胞生物活性的集体改善,这是因为支架界面上壳聚糖的存在提供了细胞兼容环境。与 Chi-PCL 相比,C-PCL 增强了支架的细胞附着和增殖性能,溶血相容性也提高了两倍。此外,与 Chi-PCL 相比,C-PCL 的压缩强度增加了 24.52%,总孔隙率增加了 8.62%。此外,尽管与 Chi-PCL 相比,C-PCL 的孔径减小了 19.98%,但 C-PCL 支架中的所有骨标记物均显示出显著的上调,这支持了表面涂层技术优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
期刊最新文献
Chitosan scaffolds with mesoporous hydroxyapatite and mesoporous bioactive glass. Correction to: Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1