Monika Stasiak, Elżbieta Maćkiw, Joanna Kowalska, Katarzyna Kucharek, Jacek Postupolski
{"title":"Silent Genes: Antimicrobial Resistance and Antibiotic Production.","authors":"Monika Stasiak, Elżbieta Maćkiw, Joanna Kowalska, Katarzyna Kucharek, Jacek Postupolski","doi":"10.33073/pjm-2021-040","DOIUrl":null,"url":null,"abstract":"<p><p>Silent genes are DNA sequences that are generally not expressed or expressed at a very low level. These genes become active as a result of mutation, recombination, or insertion. Silent genes can also be activated in laboratory conditions using pleiotropic, targeted genome-wide, or biosynthetic gene cluster approaches. Like every other gene, silent genes can spread through horizontal gene transfer. Most studies have focused on strains with phenotypic resistance, which is the most common subject. However, to fully understand the mechanism behind the spreading of antibiotic resistance, it is reasonable to study the whole resistome, including silent genes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2a/82/pjm-70-4-040.PMC8702603.pdf","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.33073/pjm-2021-040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 13
Abstract
Silent genes are DNA sequences that are generally not expressed or expressed at a very low level. These genes become active as a result of mutation, recombination, or insertion. Silent genes can also be activated in laboratory conditions using pleiotropic, targeted genome-wide, or biosynthetic gene cluster approaches. Like every other gene, silent genes can spread through horizontal gene transfer. Most studies have focused on strains with phenotypic resistance, which is the most common subject. However, to fully understand the mechanism behind the spreading of antibiotic resistance, it is reasonable to study the whole resistome, including silent genes.