Minwoo Wendy Jang, Tai Young Kim, Kushal Sharma, Jea Kwon, Eunyoung Yi, C Justin Lee
{"title":"A Deafness Associated Protein TMEM43 Interacts with KCNK3 (TASK-1) Two-pore Domain K<sup>+</sup> (K2P) Channel in the Cochlea.","authors":"Minwoo Wendy Jang, Tai Young Kim, Kushal Sharma, Jea Kwon, Eunyoung Yi, C Justin Lee","doi":"10.5607/en21028","DOIUrl":null,"url":null,"abstract":"<p><p>The TMEM43 has been studied in human diseases such as arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5) and auditory neuropathy spectrum disorder (ANSD). In the heart, the p.(Ser358Leu) mutation has been shown to alter intercalated disc protein function and disturb beating rhythms. In the cochlea, the p.(Arg372Ter) mutation has been shown to disrupt connexin-linked function in glia-like supporting cells (GLSs), which maintain inner ear homeostasis for hearing. The TMEM43-p.(Arg372Ter) mutant knock-in mice displayed a significantly reduced passive conductance current in the cochlear GLSs, raising a possibility that TMEM43 is essential for mediating the passive conductance current in GLSs. In the brain, the two-pore-domain potassium (K2P) channels are generally known as the \"leak channels\" to mediate background conductance current, raising another possibility that K2P channels might contribute to the passive conductance current in GLSs. However, the possible association between TMEM43 and K2P channels has not been investigated yet. In this study, we examined whether TMEM43 physically interacts with one of the K2P channels in the cochlea, KCNK3 (TASK-1). Utilizing co-immunoprecipitation (IP) assay and Duolink proximity ligation assay (PLA), we revealed that TMEM43 and TASK-1 proteins could directly interact. Genetic modifications further delineated that the intracellular loop domain of TMEM43 is responsible for TASK-1 binding. In the end, gene-silencing of <i>Task-1</i> resulted in significantly reduced passive conductance current in GLSs. Together, our findings demonstrate that TMEM43 and TASK-1 form a protein-protein interaction in the cochlea and provide the possibility that TASK-1 is a potential contributor to the passive conductance current in GLSs.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"30 5","pages":"319-328"},"PeriodicalIF":1.8000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/0c/en-30-5-319.PMC8572660.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en21028","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 5
Abstract
The TMEM43 has been studied in human diseases such as arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5) and auditory neuropathy spectrum disorder (ANSD). In the heart, the p.(Ser358Leu) mutation has been shown to alter intercalated disc protein function and disturb beating rhythms. In the cochlea, the p.(Arg372Ter) mutation has been shown to disrupt connexin-linked function in glia-like supporting cells (GLSs), which maintain inner ear homeostasis for hearing. The TMEM43-p.(Arg372Ter) mutant knock-in mice displayed a significantly reduced passive conductance current in the cochlear GLSs, raising a possibility that TMEM43 is essential for mediating the passive conductance current in GLSs. In the brain, the two-pore-domain potassium (K2P) channels are generally known as the "leak channels" to mediate background conductance current, raising another possibility that K2P channels might contribute to the passive conductance current in GLSs. However, the possible association between TMEM43 and K2P channels has not been investigated yet. In this study, we examined whether TMEM43 physically interacts with one of the K2P channels in the cochlea, KCNK3 (TASK-1). Utilizing co-immunoprecipitation (IP) assay and Duolink proximity ligation assay (PLA), we revealed that TMEM43 and TASK-1 proteins could directly interact. Genetic modifications further delineated that the intracellular loop domain of TMEM43 is responsible for TASK-1 binding. In the end, gene-silencing of Task-1 resulted in significantly reduced passive conductance current in GLSs. Together, our findings demonstrate that TMEM43 and TASK-1 form a protein-protein interaction in the cochlea and provide the possibility that TASK-1 is a potential contributor to the passive conductance current in GLSs.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.