Cold-atmospheric plasma augments functionalities of hybrid polymeric carriers regenerating chronic wounds: In vivo experiments

IF 8.1 1区 工程技术 Q1 MATERIALS SCIENCE, BIOMATERIALS Materials science & engineering. C, Materials for biological applications Pub Date : 2021-12-01 DOI:10.1016/j.msec.2021.112488
Yun-Hsuan Chen , Er-Yuan Chuang , Pei-Ru Jheng , Ping-Chien Hao , Jang-Hsing Hsieh , Hsin-Lung Chen , Bradley W. Mansel , Yi-Yen Yeh , Chu-Xuan Lu , Jyh-Wei Lee , Yu-Cheng Hsiao , Nima Bolouki
{"title":"Cold-atmospheric plasma augments functionalities of hybrid polymeric carriers regenerating chronic wounds: In vivo experiments","authors":"Yun-Hsuan Chen ,&nbsp;Er-Yuan Chuang ,&nbsp;Pei-Ru Jheng ,&nbsp;Ping-Chien Hao ,&nbsp;Jang-Hsing Hsieh ,&nbsp;Hsin-Lung Chen ,&nbsp;Bradley W. Mansel ,&nbsp;Yi-Yen Yeh ,&nbsp;Chu-Xuan Lu ,&nbsp;Jyh-Wei Lee ,&nbsp;Yu-Cheng Hsiao ,&nbsp;Nima Bolouki","doi":"10.1016/j.msec.2021.112488","DOIUrl":null,"url":null,"abstract":"<div><p>The skin possesses an epithelial barrier. Delivering growth factors to deeper wounds is usually rather challenging, and these typically restrict the therapeutic efficacy for chronic wound healing. Efficient healing of chronic wounds also requires abundant blood flow. Therefore, addressing these concerns is crucial. Among presently accessible biomedical materials, tailored hydrogels are favorable for translational medicine. However, these hydrogels display insufficient mechanical properties, hampering their biomedical uses. Cold-atmospheric plasma (CAP) has potent cross-linking/polymerizing abilities. The CAP was characterized spectroscopically to identify excited radiation and species (hydroxyl and UV). CAP was used to polymerize pyrrole (creating Ppy) and crosslink hybrid polymers (Ppy, hyaluronic acid (HA), and gelatin (GEL)) as a multimodal dressing for chronic wounds (CAP-Ppy/GEL/HA), which were used to incorporate therapeutic platelet proteins (PPs). Herein, the physicochemical and biological features of the developed CAP-Ppy/GEL/HA/PP complex were assessed. CAP-Ppy/GEL/HA/PPs had positive impacts on wound healing in vitro. In addition, the CAP-Ppy/GEL/HA complex has improved mechanical aspects, therapeutics sustained-release/retention effect, and near-infrared (NIR)-driven photothermal-hyperthermic effects on lesions that drive the expression of heat-shock protein (HSP) with anti-inflammatory properties for boosted restoration of diabetic wounds in vivo. These in vitro and in vivo outcomes support the use of CAP-Ppy/GEL/HA/PPs for diabetic wound regeneration.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112488"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006287/pdfft?md5=eb2628723a970fc57413e4e487e35621&pid=1-s2.0-S0928493121006287-main.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006287","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9

Abstract

The skin possesses an epithelial barrier. Delivering growth factors to deeper wounds is usually rather challenging, and these typically restrict the therapeutic efficacy for chronic wound healing. Efficient healing of chronic wounds also requires abundant blood flow. Therefore, addressing these concerns is crucial. Among presently accessible biomedical materials, tailored hydrogels are favorable for translational medicine. However, these hydrogels display insufficient mechanical properties, hampering their biomedical uses. Cold-atmospheric plasma (CAP) has potent cross-linking/polymerizing abilities. The CAP was characterized spectroscopically to identify excited radiation and species (hydroxyl and UV). CAP was used to polymerize pyrrole (creating Ppy) and crosslink hybrid polymers (Ppy, hyaluronic acid (HA), and gelatin (GEL)) as a multimodal dressing for chronic wounds (CAP-Ppy/GEL/HA), which were used to incorporate therapeutic platelet proteins (PPs). Herein, the physicochemical and biological features of the developed CAP-Ppy/GEL/HA/PP complex were assessed. CAP-Ppy/GEL/HA/PPs had positive impacts on wound healing in vitro. In addition, the CAP-Ppy/GEL/HA complex has improved mechanical aspects, therapeutics sustained-release/retention effect, and near-infrared (NIR)-driven photothermal-hyperthermic effects on lesions that drive the expression of heat-shock protein (HSP) with anti-inflammatory properties for boosted restoration of diabetic wounds in vivo. These in vitro and in vivo outcomes support the use of CAP-Ppy/GEL/HA/PPs for diabetic wound regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温大气等离子体增强复合聚合物载体再生慢性伤口的功能:体内实验
皮肤有一层上皮屏障。将生长因子输送到更深的伤口通常是相当具有挑战性的,这些通常限制了慢性伤口愈合的治疗效果。慢性伤口的有效愈合也需要充足的血流量。因此,解决这些问题是至关重要的。在目前可获得的生物医学材料中,定制水凝胶有利于转化医学。然而,这些水凝胶表现出的机械性能不足,阻碍了它们在生物医学上的应用。冷常压等离子体(CAP)具有强大的交联/聚合能力。对CAP进行了光谱表征,以确定激发辐射和种类(羟基和紫外线)。CAP用于聚合吡咯(生成Ppy)和交联杂化聚合物(Ppy、透明质酸(HA)和明胶(GEL)),作为慢性伤口的多模态敷料(CAP-Ppy/GEL/HA),用于掺入治疗性血小板蛋白(PPs)。本文对制备的CAP-Ppy/GEL/HA/PP配合物的物理化学和生物学特性进行了评价。CAP-Ppy/GEL/HA/PPs对体外创面愈合有积极影响。此外,CAP-Ppy/GEL/HA复合物改善了力学方面、治疗方面的缓释/滞留效应,以及近红外(NIR)驱动的病变光热-高温效应,从而驱动具有抗炎特性的热休克蛋白(HSP)的表达,促进体内糖尿病伤口的恢复。这些体外和体内结果支持CAP-Ppy/GEL/HA/PPs用于糖尿病伤口再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.
期刊最新文献
Editorial Board Autologous stromal vascular fraction-loaded hyaluronic acid/gelatin-biphasic calcium phosphate scaffold for bone tissue regeneration Construction of multifunctional micro-patterned PALNMA/PDADMAC/PEGDA hydrogel and intelligently responsive antibacterial coating HA/BBR on Mg alloy surface for orthopedic application Machine learning to empower electrohydrodynamic processing Nanoparticles-stacked superhydrophilic coating supported synergistic antimicrobial ability for enhanced wound healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1