{"title":"Autologous stromal vascular fraction-loaded hyaluronic acid/gelatin-biphasic calcium phosphate scaffold for bone tissue regeneration","authors":"Seong-su Park , Myeongki Park , Byong-Taek Lee","doi":"10.1016/j.msec.2021.112533","DOIUrl":null,"url":null,"abstract":"<div><p>Bone defect augmentation with synthetic materials is crucial due to the unavoidable limitations of auto- and allografting. Although there are different promising synthetic materials for filling bone defects, the functionalization of these materials with cells is still challenging due to the lack of ideal cell sources. Here, we used stromal vascular fraction (SVF) heterogeneous cells that could be obtained from autologous adipose tissue to functionalize hyaluronic acid/gelatin-biphasic calcium phosphate (HyA-Gel/BCP) scaffolds for bone regeneration. The SVF cells were isolated, and the cellular composition and osteogenic differentiation potential were analyzed. Then, they were cultured on HyA-Gel/BCP scaffolds for <em>in vitro</em> characterization. An <em>In vivo</em> evaluation of the autologous SVF-loaded HyA-Gel/BCP scaffolds was performed using a rat skull critical-size defect model. The results showed that the SVF was successfully isolated and contained different types of cells, including mesenchymal stem like-cells with osteogenic differentiation ability. Also, the SVF cells could be cultured and expanded on the HyA-Gel/BCP scaffolds without affecting their viability. <em>In vivo</em> implantation of autologous SVF-loaded HyA-Gel/BCP scaffolds showed excellent bone regeneration compared to unloaded HyA-Gel/BCP scaffolds. Thus, autologous SVF-loaded HyA-Gel/BCP scaffolds could be a promising transplantable bone grafting material for bone tissue engineering.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006731/pdfft?md5=45bf0becdd85c3b9910f1e929884aee3&pid=1-s2.0-S0928493121006731-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006731","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6
Abstract
Bone defect augmentation with synthetic materials is crucial due to the unavoidable limitations of auto- and allografting. Although there are different promising synthetic materials for filling bone defects, the functionalization of these materials with cells is still challenging due to the lack of ideal cell sources. Here, we used stromal vascular fraction (SVF) heterogeneous cells that could be obtained from autologous adipose tissue to functionalize hyaluronic acid/gelatin-biphasic calcium phosphate (HyA-Gel/BCP) scaffolds for bone regeneration. The SVF cells were isolated, and the cellular composition and osteogenic differentiation potential were analyzed. Then, they were cultured on HyA-Gel/BCP scaffolds for in vitro characterization. An In vivo evaluation of the autologous SVF-loaded HyA-Gel/BCP scaffolds was performed using a rat skull critical-size defect model. The results showed that the SVF was successfully isolated and contained different types of cells, including mesenchymal stem like-cells with osteogenic differentiation ability. Also, the SVF cells could be cultured and expanded on the HyA-Gel/BCP scaffolds without affecting their viability. In vivo implantation of autologous SVF-loaded HyA-Gel/BCP scaffolds showed excellent bone regeneration compared to unloaded HyA-Gel/BCP scaffolds. Thus, autologous SVF-loaded HyA-Gel/BCP scaffolds could be a promising transplantable bone grafting material for bone tissue engineering.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.