{"title":"Hierarchical dual-responsive cleavable nanosystem for synergetic photodynamic/photothermal therapy against melanoma","authors":"Yingtao Zhong , Xiaofang Zhang , Linlin Yang , Futu Liang , Jinxin Zhang , Yaodong Jiang , Xuemei Chen , Fei Ren","doi":"10.1016/j.msec.2021.112524","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, the combining photodynamic therapy (PDT) with photothermal therapy (PTT) modalities based on a single near infrared (NIR) laser irradiation and highly selective internalization still remain a challenge. Herein, a hierarchical dual-responsive cleavable nanosystem for synergetic NIR triggered PDT/PTT is reported. The engineered nanoplatform (Au NRs/Cur/UCNPs@PBE) is designed by loading curcumin (Cur, photosensitizer) on gold nanarods (Au NRs) to build PDT/PTT therapy system, which was encapsulated outside with upconversion nanoparticles (UCNPs) and then modified with phenylboronic double ester (PBE). The pH and ROS-responsive feature made Au NRs/Cur/UCNPs@PBE provide a fundamental structural evolution and improve the specificity and intracellular accumulation to tumors. Au NRs/Cur/UCNPs@PBE exhibited significant PDT and PTT efficiency against two type melanoma cells due to upconversion nanoparticles and Au NRs induced by an 808 nm laser. Notably, the platform can mainly activate apoptosis and partial ferroptosis to achieve the synergistic PDT/PTT, furthermore, the integrated PDT with PTT using Au NRs/Cur/UCNPs@PBE showcased a great antitumor efficacy <em>in vivo</em> superior to the other alone treatment. Our findings highlight that this intelligent nanoagents for synergistic phototherapy facilitate enhanced fighting melanoma and provide a promising strategy for melanoma theranostics.</p></div>","PeriodicalId":18212,"journal":{"name":"Materials science & engineering. C, Materials for biological applications","volume":"131 ","pages":"Article 112524"},"PeriodicalIF":8.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928493121006640/pdfft?md5=e61472ad7eabe93c0532facd4a6e40ed&pid=1-s2.0-S0928493121006640-main.pdf","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials science & engineering. C, Materials for biological applications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928493121006640","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 13
Abstract
Currently, the combining photodynamic therapy (PDT) with photothermal therapy (PTT) modalities based on a single near infrared (NIR) laser irradiation and highly selective internalization still remain a challenge. Herein, a hierarchical dual-responsive cleavable nanosystem for synergetic NIR triggered PDT/PTT is reported. The engineered nanoplatform (Au NRs/Cur/UCNPs@PBE) is designed by loading curcumin (Cur, photosensitizer) on gold nanarods (Au NRs) to build PDT/PTT therapy system, which was encapsulated outside with upconversion nanoparticles (UCNPs) and then modified with phenylboronic double ester (PBE). The pH and ROS-responsive feature made Au NRs/Cur/UCNPs@PBE provide a fundamental structural evolution and improve the specificity and intracellular accumulation to tumors. Au NRs/Cur/UCNPs@PBE exhibited significant PDT and PTT efficiency against two type melanoma cells due to upconversion nanoparticles and Au NRs induced by an 808 nm laser. Notably, the platform can mainly activate apoptosis and partial ferroptosis to achieve the synergistic PDT/PTT, furthermore, the integrated PDT with PTT using Au NRs/Cur/UCNPs@PBE showcased a great antitumor efficacy in vivo superior to the other alone treatment. Our findings highlight that this intelligent nanoagents for synergistic phototherapy facilitate enhanced fighting melanoma and provide a promising strategy for melanoma theranostics.
期刊介绍:
Materials Today is a community committed to fostering the creation and sharing of knowledge and experience in materials science. With the support of Elsevier, this community publishes high-impact peer-reviewed journals, organizes academic conferences, and conducts educational webinars, among other initiatives. It serves as a hub for advancing materials science and facilitating collaboration within the scientific community.