Ebtesam A Mohamad, Alyaa A Elfky, Reem H El-Gebaly, Amira Afify
{"title":"Study the change in the mosquito larvae (<i>Culex pipiens</i>) in water treated with short pulses electric filed.","authors":"Ebtesam A Mohamad, Alyaa A Elfky, Reem H El-Gebaly, Amira Afify","doi":"10.1080/15368378.2021.2012787","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical Pulsed Field (PEF), of pulse duration in 4 milliseconds, effect on mosquito larvae (<i>Culex pipiens</i>) as aquatic insects is assessed in this work. Mosquito larvae classes have been treated with electric field power values (66.66, 83.33, 100, 116.66 V/cm) with separate pulse number (60) and other classes of various pulse numbers have been treated (20, 40, 60, 80) with power of the electrical field 100 V/cm. The findings revealed that positively significant of increase of the applied electrical field strength or increase of the number of pulses. The rise in both cases leads to an increase in the mortality of 25%, 50%, and 75% of the mosquito larvae (<i>P</i> < .05). The impact was calculated with the bioassay system on mosque larvae, SDS-PAGE for whole body proteins, enzyme analysis and ultrastructural examination using TEM. The current study reveals that a low pulsed electric field can cause mosquito larvae genotoxic, changes in the insect's body proteins, which may affect the insect's ability to live. The increase in pulsed electric field parameters also activates oxidative stress in the insect cell by disrupting its secretion of enzymes that could affect the mosquito's capabilities in the future.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"41 1","pages":"80-92"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2021.2012787","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Electrical Pulsed Field (PEF), of pulse duration in 4 milliseconds, effect on mosquito larvae (Culex pipiens) as aquatic insects is assessed in this work. Mosquito larvae classes have been treated with electric field power values (66.66, 83.33, 100, 116.66 V/cm) with separate pulse number (60) and other classes of various pulse numbers have been treated (20, 40, 60, 80) with power of the electrical field 100 V/cm. The findings revealed that positively significant of increase of the applied electrical field strength or increase of the number of pulses. The rise in both cases leads to an increase in the mortality of 25%, 50%, and 75% of the mosquito larvae (P < .05). The impact was calculated with the bioassay system on mosque larvae, SDS-PAGE for whole body proteins, enzyme analysis and ultrastructural examination using TEM. The current study reveals that a low pulsed electric field can cause mosquito larvae genotoxic, changes in the insect's body proteins, which may affect the insect's ability to live. The increase in pulsed electric field parameters also activates oxidative stress in the insect cell by disrupting its secretion of enzymes that could affect the mosquito's capabilities in the future.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.