Multi-scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning.

Mahbaneh Eshaghzadeh Torbati, Dana L Tudorascu, Davneet S Minhas, Pauline Maillard, Charles S DeCarli, Seong Jae Hwang
{"title":"Multi-scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning.","authors":"Mahbaneh Eshaghzadeh Torbati, Dana L Tudorascu, Davneet S Minhas, Pauline Maillard, Charles S DeCarli, Seong Jae Hwang","doi":"10.1109/ICCVW54120.2021.00367","DOIUrl":null,"url":null,"abstract":"<p><p>Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies. Despite numerous benefits from the growth in sample size, substantial technical variability associated with site/scanner-related effects exists which may inadvertently bias subsequent downstream analyses. Such a challenge calls for a data harmonization procedure which reduces the scanner effects and allows the scans to be combined for pooled analyses. In this work, we present MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a multi-scanner harmonization framework. Unlike existing techniques, MISPEL does not assume a perfect coregistration across the scans, and the framework is naturally extendable to more than two scanners. Importantly, we incorporate our multi-scanner dataset where each subject is scanned on four different scanners. This unique paired dataset allows us to define and aim for an ideal harmonization (e.g., each subject with identical brain tissue volumes on all scanners). We extensively view scanner effects under varying metrics and demonstrate how MISPEL significantly improves them.</p>","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":" ","pages":"3277-3286"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668020/pdf/nihms-1760021.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies. Despite numerous benefits from the growth in sample size, substantial technical variability associated with site/scanner-related effects exists which may inadvertently bias subsequent downstream analyses. Such a challenge calls for a data harmonization procedure which reduces the scanner effects and allows the scans to be combined for pooled analyses. In this work, we present MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a multi-scanner harmonization framework. Unlike existing techniques, MISPEL does not assume a perfect coregistration across the scans, and the framework is naturally extendable to more than two scanners. Importantly, we incorporate our multi-scanner dataset where each subject is scanned on four different scanners. This unique paired dataset allows us to define and aim for an ideal harmonization (e.g., each subject with identical brain tissue volumes on all scanners). We extensively view scanner effects under varying metrics and demonstrate how MISPEL significantly improves them.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过结构保持嵌入学习实现配对神经影像数据的多扫描仪协调
在现代神经成像研究中,将多个部位/扫描仪的数据集合并在一起的做法越来越普遍。尽管样本量的增加带来了很多好处,但与研究地点/扫描仪相关的影响所带来的巨大技术差异可能会无意中对后续的下游分析产生偏差。面对这样的挑战,我们需要一种数据协调程序来减少扫描仪的影响,并将扫描结果合并起来进行汇总分析。在这项工作中,我们提出了多扫描仪协调框架 MISPEL(通过结构保留嵌入学习实现多扫描仪图像协调)。与现有技术不同的是,MISPEL 并不假定所有扫描图像都能完美对位,而且该框架可自然扩展到两台以上的扫描仪。重要的是,我们采用了多扫描仪数据集,每个受试者在四台不同的扫描仪上进行扫描。这种独特的配对数据集让我们能够定义并实现理想的协调(例如,每个受试者在所有扫描仪上的脑组织体积完全相同)。我们广泛查看了不同指标下的扫描仪效应,并展示了 MISPEL 如何显著改善这些效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Supervised Anomaly Detection from Anomalous Training Data via Iterative Latent Token Masking. Self-supervised Semantic Segmentation: Consistency over Transformation. Learning to Learn: How to Continuously Teach Humans and Machines. STRIDE: Street View-based Environmental Feature Detection and Pedestrian Collision Prediction. Robust AMD Stage Grading with Exclusively OCTA Modality Leveraging 3D Volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1