Chronic Restraint Stress Decreases the Excitability of Hypothalamic POMC Neuron and Increases Food Intake.

IF 1.8 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Experimental Neurobiology Pub Date : 2021-12-31 DOI:10.5607/en21037
Go Eun Ha, Eunji Cheong
{"title":"Chronic Restraint Stress Decreases the Excitability of Hypothalamic POMC Neuron and Increases Food Intake.","authors":"Go Eun Ha,&nbsp;Eunji Cheong","doi":"10.5607/en21037","DOIUrl":null,"url":null,"abstract":"<p><p>Stress activates the hypothalamic-pituitary-adrenal system, and induces the release of glucocorticoids, stress hormones, into circulation. Many studies have shown that stress affects feeding behavior, however, the underlying circuitry and molecular mechanisms are not fully understood. The balance between orexigenic (simulating appetite) and anorexigenic (loss of appetite) signals reciprocally modulate feeding behavior. It is suggested that proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus (ARC) of the hypothalamus are the first-order neurons that respond to the circulating signals of hunger and satiety. Here, we examined a chronic restraint stress model and observed an increase in food intake, which was not correlated with anhedonia. We investigated whether stress affects the properties of POMC and NPY neurons and found that chronic restraint stress reduced the excitatory inputs onto POMC neurons and increased the action potential threshold. Therefore, our study suggests that chronic stress modulates the intrinsic excitability and excitatory inputs in POMC neurons, leading to changes in feeding behavior.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"30 6","pages":"375-386"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/43/en-30-6-375.PMC8752322.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en21037","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 4

Abstract

Stress activates the hypothalamic-pituitary-adrenal system, and induces the release of glucocorticoids, stress hormones, into circulation. Many studies have shown that stress affects feeding behavior, however, the underlying circuitry and molecular mechanisms are not fully understood. The balance between orexigenic (simulating appetite) and anorexigenic (loss of appetite) signals reciprocally modulate feeding behavior. It is suggested that proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus (ARC) of the hypothalamus are the first-order neurons that respond to the circulating signals of hunger and satiety. Here, we examined a chronic restraint stress model and observed an increase in food intake, which was not correlated with anhedonia. We investigated whether stress affects the properties of POMC and NPY neurons and found that chronic restraint stress reduced the excitatory inputs onto POMC neurons and increased the action potential threshold. Therefore, our study suggests that chronic stress modulates the intrinsic excitability and excitatory inputs in POMC neurons, leading to changes in feeding behavior.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢性约束应激降低下丘脑POMC神经元的兴奋性,增加食物摄入量。
压力激活下丘脑-垂体-肾上腺系统,诱导糖皮质激素(应激激素)进入循环。许多研究表明,应激影响摄食行为,然而,潜在的电路和分子机制尚未完全了解。促氧信号(模拟食欲)和厌氧信号(失去食欲)之间的平衡相互调节摄食行为。提示下丘脑弓状核(ARC)中的proopiomelanocortin (POMC)和神经肽Y (NPY)神经元是响应饥饿和饱腹感循环信号的一级神经元。在这里,我们检查了一个慢性约束压力模型,观察到食物摄入量的增加,这与快感缺乏无关。我们研究了应激是否影响POMC和NPY神经元的特性,发现慢性限制性应激减少了POMC神经元的兴奋性输入,增加了动作电位阈值。因此,我们的研究表明,慢性应激调节POMC神经元的内在兴奋性和兴奋性输入,导致摄食行为的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Neurobiology
Experimental Neurobiology Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.30
自引率
4.20%
发文量
29
期刊介绍: Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.
期刊最新文献
Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex. Systemic Inflammation Decreases Initial Brain Injury but Attenuates Neurite Extension and Synapse Formation during the Repair of Injured Brains. The Impact of Odor Category Similarity on Multimedia Experience. β-PIX-d, a Member of the ARHGEF7 Guanine Nucleotide Exchange Factor Family, Activates Rac1 and Induces Neuritogenesis in Primary Cortical Neurons. Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1