Wenqing Wei, Tianyuan Zhang, Zifang Huang, Junlin Yang
{"title":"Finite element analysis in brace treatment on adolescent idiopathic scoliosis.","authors":"Wenqing Wei, Tianyuan Zhang, Zifang Huang, Junlin Yang","doi":"10.1007/s11517-022-02524-0","DOIUrl":null,"url":null,"abstract":"<p><p>Adolescent idiopathic scoliosis (AIS) is a musculoskeletal disorder characterized as three-dimensional (3D) deformity, and bracing is a common conservative treatment for AIS. Finite element analysis (FEA) is a technique for numerically solving the differential equations arising in engineering and mathematical modeling and has been widely used in biomechanical studies. Recently, FEA has been under intensive focus to improve the clinical outcomes of brace treatment. This review focuses on using FEA to assist brace treatment for AIS and technique choices that may be encountered during the construction of the finite element model (FEM). The construction of geometric models, the mechanical property, element type, the boundary condition, and the observation items of FEA have been summarized while establishing FEM. In each technical aspect, different fields and limitations of FEA are discussed. The observation items based on FEA are collected in addition to the biomechanical value in clinical research. We also summarized the technical aspects of brace treatment by FEA and observation items and provided guidance and directions to improve the brace treatment.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"907-920"},"PeriodicalIF":2.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-022-02524-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
Adolescent idiopathic scoliosis (AIS) is a musculoskeletal disorder characterized as three-dimensional (3D) deformity, and bracing is a common conservative treatment for AIS. Finite element analysis (FEA) is a technique for numerically solving the differential equations arising in engineering and mathematical modeling and has been widely used in biomechanical studies. Recently, FEA has been under intensive focus to improve the clinical outcomes of brace treatment. This review focuses on using FEA to assist brace treatment for AIS and technique choices that may be encountered during the construction of the finite element model (FEM). The construction of geometric models, the mechanical property, element type, the boundary condition, and the observation items of FEA have been summarized while establishing FEM. In each technical aspect, different fields and limitations of FEA are discussed. The observation items based on FEA are collected in addition to the biomechanical value in clinical research. We also summarized the technical aspects of brace treatment by FEA and observation items and provided guidance and directions to improve the brace treatment.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).